Thyra
Version of the Day
|
Abstract interface for finite-dimensional dense vectors. More...
#include <Thyra_VectorBase.hpp>
Related Functions | |
(Note that these are not member functions.) | |
template<class Scalar > | |
void | applyOp (const RTOpPack::RTOpT< Scalar > &op, const ArrayView< const Ptr< const VectorBase< Scalar > > > &vecs, const ArrayView< const Ptr< VectorBase< Scalar > > > &targ_vecs, const Ptr< RTOpPack::ReductTarget > &reduct_obj, const Ordinal global_offset=0) |
Apply a reduction/transformation operator over a set of vectors: op(op(v[0]...v[nv-1],z[0]...z[nz-1]),(*reduct_obj)) -> z[0]...z[nz-1],(*reduct_obj) . More... | |
template<class Scalar > | |
Scalar | sum (const VectorBase< Scalar > &v) |
Sum of vector elements: result = sum( v(i), i = 0...v.space()->dim()-1 ) . More... | |
template<class Scalar > | |
Scalar | scalarProd (const VectorBase< Scalar > &x, const VectorBase< Scalar > &y) |
Scalar product result = <x,y> . More... | |
template<class Scalar > | |
Scalar | inner (const VectorBase< Scalar > &x, const VectorBase< Scalar > &y) |
Inner/Scalar product result = <x,y> . More... | |
template<class Scalar > | |
Teuchos::ScalarTraits< Scalar > ::magnitudeType | norm (const VectorBase< Scalar > &v) |
Natural norm: result = sqrt(<v,v>) . More... | |
template<class Scalar > | |
Teuchos::ScalarTraits< Scalar > ::magnitudeType | norm_1 (const VectorBase< Scalar > &v) |
One (1) norm: result = ||v||1 . More... | |
template<class Scalar > | |
Teuchos::ScalarTraits< Scalar > ::magnitudeType | norm_2 (const VectorBase< Scalar > &v) |
Euclidean (2) norm: result = ||v||2 . More... | |
template<class Scalar > | |
Teuchos::ScalarTraits< Scalar > ::magnitudeType | norm_2 (const VectorBase< Scalar > &w, const VectorBase< Scalar > &v) |
Weighted Euclidean (2) norm: result = sqrt( sum( w(i)*conj(v(i))*v(i)) ) . More... | |
template<class Scalar > | |
Teuchos::ScalarTraits< Scalar > ::magnitudeType | norm_inf (const VectorBase< Scalar > &v_rhs) |
Infinity norm: result = ||v||inf . More... | |
template<class Scalar > | |
Scalar | dot (const VectorBase< Scalar > &x, const VectorBase< Scalar > &y) |
Dot product: result = conj(x)'*y . More... | |
template<class Scalar > | |
Scalar | get_ele (const VectorBase< Scalar > &v, Ordinal i) |
Get single element: result = v(i) . More... | |
template<class Scalar > | |
void | set_ele (Ordinal i, Scalar alpha, const Ptr< VectorBase< Scalar > > &v) |
Set single element: v(i) = alpha . More... | |
template<class Scalar > | |
void | put_scalar (const Scalar &alpha, const Ptr< VectorBase< Scalar > > &y) |
Assign all elements to a scalar: y(i) = alpha, i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | copy (const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y) |
Vector assignment: y(i) = x(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | add_scalar (const Scalar &alpha, const Ptr< VectorBase< Scalar > > &y) |
Add a scalar to all elements: y(i) += alpha, i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | scale (const Scalar &alpha, const Ptr< VectorBase< Scalar > > &y) |
Scale all elements by a scalar: y(i) *= alpha, i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | abs (const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y) |
Element-wise absolute value: y(i) = abs(x(i)), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | reciprocal (const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y) |
Element-wise reciprocal: y(i) = 1/x(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | ele_wise_prod (const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v, const Ptr< VectorBase< Scalar > > &y) |
Element-wise product update: y(i) += alpha * x(i) * v(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | pair_wise_max (const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v, const Ptr< VectorBase< Scalar > > &y) |
Element-wise maximum: y(i) = alpha * max(x(i), v(i)), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | ele_wise_conj_prod (const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v, const Ptr< VectorBase< Scalar > > &y) |
Element-wise conjugate product update: y(i) += alpha * conj(x(i)) * v(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | ele_wise_scale (const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y) |
Element-wise scaling: y(i) *= x(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | Vp_StVtV (const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v) |
Element-wise product update: y(i) += alpha * x(i) * v(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | ele_wise_prod_update (const Scalar &alpha, const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y) |
Element-wise product update: y(i) *= alpha * x(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | pair_wise_max_update (const Scalar &alpha, const VectorBase< Scalar > &x, const Ptr< VectorBase< Scalar > > &y) |
Element-wise maximum update: y(i) = alpha * max(x(i), y(i)), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | Vt_StV (const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha, const VectorBase< Scalar > &x) |
Element-wise product update: y(i) *= alpha * x(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | ele_wise_divide (const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &v, const Ptr< VectorBase< Scalar > > &y) |
Element-wise division update: y(i) += alpha * x(i) / v(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | linear_combination (const ArrayView< const Scalar > &alpha, const ArrayView< const Ptr< const VectorBase< Scalar > > > &x, const Scalar &beta, const Ptr< VectorBase< Scalar > > &y) |
Linear combination: y(i) = beta*y(i) + sum( alpha[k]*x[k](i), k=0...m-1 ), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | seed_randomize (unsigned int s) |
Seed the random number generator used in randomize() . More... | |
template<class Scalar > | |
void | randomize (Scalar l, Scalar u, const Ptr< VectorBase< Scalar > > &v) |
Random vector generation: v(i) = rand(l,u), , i = 1...v->space()->dim() . More... | |
template<class Scalar > | |
void | assign (const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha) |
Assign all elements to a scalar: y(i) = alpha, i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | assign (const Ptr< VectorBase< Scalar > > &y, const VectorBase< Scalar > &x) |
Vector assignment: y(i) = x(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | Vp_S (const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha) |
Add a scalar to all elements: y(i) += alpha, i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | Vt_S (const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha) |
Scale all elements by a scalar: y(i) *= alpha, i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | V_StV (const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha, const VectorBase< Scalar > &x) |
Assign scaled vector: y(i) = alpha * x(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | Vp_StV (const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha, const VectorBase< Scalar > &x) |
AXPY: y(i) = alpha * x(i) + y(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | Vp_V (const Ptr< VectorBase< Scalar > > &y, const VectorBase< Scalar > &x, const Scalar &beta=static_cast< Scalar >(1.0)) |
y(i) = x(i) + beta*y(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | V_V (const Ptr< VectorBase< Scalar > > &y, const VectorBase< Scalar > &x) |
y(i) = x(i), i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | V_S (const Ptr< VectorBase< Scalar > > &y, const Scalar &alpha) |
y(i) = alpha, i = 0...y->space()->dim()-1 . More... | |
template<class Scalar > | |
void | V_VpV (const Ptr< VectorBase< Scalar > > &z, const VectorBase< Scalar > &x, const VectorBase< Scalar > &y) |
z(i) = x(i) + y(i), i = 0...z->space()->dim()-1 . More... | |
template<class Scalar > | |
void | V_VmV (const Ptr< VectorBase< Scalar > > &z, const VectorBase< Scalar > &x, const VectorBase< Scalar > &y) |
z(i) = x(i) - y(i), i = 0...z->space()->dim()-1 . More... | |
template<class Scalar > | |
void | V_StVpV (const Ptr< VectorBase< Scalar > > &z, const Scalar &alpha, const VectorBase< Scalar > &x, const VectorBase< Scalar > &y) |
z(i) = alpha*x(i) + y(i), i = 0...z->space()->dim()-1 . More... | |
template<class Scalar > | |
void | V_VpStV (const Ptr< VectorBase< Scalar > > &z, const VectorBase< Scalar > &x, const Scalar &alpha, const VectorBase< Scalar > &y) |
z(i) = x(i) + alpha*y(i), i = 0...z->space()->dim()-1 . More... | |
template<class Scalar > | |
void | V_StVpStV (const Ptr< VectorBase< Scalar > > &z, const Scalar &alpha, const VectorBase< Scalar > &x, const Scalar &beta, const VectorBase< Scalar > &y) |
z(i) = alpha*x(i) + beta*y(i), i = 0...z->space()->dim()-1 . More... | |
template<class Scalar > | |
Scalar | min (const VectorBase< Scalar > &x) |
Min element: result = min{ x(i), i = 0...x.space()->dim()-1 } . More... | |
template<class Scalar > | |
void | min (const VectorBase< Scalar > &x, const Ptr< Scalar > &maxEle, const Ptr< Ordinal > &maxIndex) |
Min element and its index: Returns maxEle = x(k) and maxIndex = k such that x(k) <= x(i) for all i = 0...x.space()->dim()-1 . More... | |
template<class Scalar > | |
void | minGreaterThanBound (const VectorBase< Scalar > &x, const Scalar &bound, const Ptr< Scalar > &minEle, const Ptr< Ordinal > &minIndex) |
Minimum element greater than some bound and its index: Returns minEle = x(k) and minIndex = k such that x(k) <= x(i) for all i where x(i) > bound . More... | |
template<class Scalar > | |
Scalar | max (const VectorBase< Scalar > &x) |
Max element: result = max{ x(i), i = 1...n } . More... | |
template<class Scalar > | |
void | max (const VectorBase< Scalar > &x, const Ptr< Scalar > &maxEle, const Ptr< Ordinal > &maxIndex) |
Max element and its index: Returns maxEle = x(k) and maxIndex = k such that x(k) >= x(i) for i = 0...x.space()->dim()-1 . More... | |
template<class Scalar > | |
void | maxLessThanBound (const VectorBase< Scalar > &x, const Scalar &bound, const Ptr< Scalar > &maxEle, const Ptr< Ordinal > &maxIndex) |
Max element less than bound and its index: Returns maxEle = x(k) and maxIndex = k such that x(k) >= x(i) for all i where x(i) < bound . More... | |
Related Functions inherited from Thyra::MultiVectorBase< Scalar > | |
template<class Scalar > | |
void | applyOp (const RTOpPack::RTOpT< Scalar > &primary_op, const ArrayView< const Ptr< const MultiVectorBase< Scalar > > > &multi_vecs, const ArrayView< const Ptr< MultiVectorBase< Scalar > > > &targ_multi_vecs, const ArrayView< const Ptr< RTOpPack::ReductTarget > > &reduct_objs, const Ordinal primary_global_offset=0) |
Apply a reduction/transformation operator column by column and return an array of the reduction objects. More... | |
template<class Scalar > | |
void | applyOp (const RTOpPack::RTOpT< Scalar > &primary_op, const RTOpPack::RTOpT< Scalar > &secondary_op, const ArrayView< const Ptr< const MultiVectorBase< Scalar > > > &multi_vecs, const ArrayView< const Ptr< MultiVectorBase< Scalar > > > &targ_multi_vecs, const Ptr< RTOpPack::ReductTarget > &reduct_obj, const Ordinal primary_global_offset=0) |
Apply a reduction/transformation operator column by column and reduce the intermediate reduction objects into one reduction object. More... | |
template<class Scalar > | |
void | norms (const MultiVectorBase< Scalar > &V, const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) |
Column-wise multi-vector natural norm. More... | |
template<class Scalar , class NormOp > | |
void | reductions (const MultiVectorBase< Scalar > &V, const NormOp &op, const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) |
Column-wise multi-vector reductions. More... | |
template<class Scalar > | |
void | norms_1 (const MultiVectorBase< Scalar > &V, const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) |
Column-wise multi-vector one norm. More... | |
template<class Scalar > | |
void | norms_2 (const MultiVectorBase< Scalar > &V, const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) |
Column-wise multi-vector 2 (Euclidean) norm. More... | |
template<class Scalar > | |
void | norms_inf (const MultiVectorBase< Scalar > &V, const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) |
Column-wise multi-vector infinity norm. More... | |
template<class Scalar > | |
Array< typename ScalarTraits < Scalar >::magnitudeType > | norms_inf (const MultiVectorBase< Scalar > &V) |
Column-wise multi-vector infinity norm. More... | |
template<class Scalar > | |
void | dots (const MultiVectorBase< Scalar > &V1, const MultiVectorBase< Scalar > &V2, const ArrayView< Scalar > &dots) |
Multi-vector dot product. More... | |
template<class Scalar > | |
void | sums (const MultiVectorBase< Scalar > &V, const ArrayView< Scalar > &sums) |
Multi-vector column sum. More... | |
template<class Scalar > | |
ScalarTraits< Scalar > ::magnitudeType | norm_1 (const MultiVectorBase< Scalar > &V) |
Take the induced matrix one norm of a multi-vector. More... | |
template<class Scalar > | |
void | scale (Scalar alpha, const Ptr< MultiVectorBase< Scalar > > &V) |
V = alpha*V. More... | |
template<class Scalar > | |
void | scaleUpdate (const VectorBase< Scalar > &a, const MultiVectorBase< Scalar > &U, const Ptr< MultiVectorBase< Scalar > > &V) |
A*U + V -> V (where A is a diagonal matrix with diagonal a). More... | |
template<class Scalar > | |
void | assign (const Ptr< MultiVectorBase< Scalar > > &V, Scalar alpha) |
V = alpha. More... | |
template<class Scalar > | |
void | assign (const Ptr< MultiVectorBase< Scalar > > &V, const MultiVectorBase< Scalar > &U) |
V = U. More... | |
template<class Scalar > | |
void | update (Scalar alpha, const MultiVectorBase< Scalar > &U, const Ptr< MultiVectorBase< Scalar > > &V) |
alpha*U + V -> V. More... | |
template<class Scalar > | |
void | update (const ArrayView< const Scalar > &alpha, Scalar beta, const MultiVectorBase< Scalar > &U, const Ptr< MultiVectorBase< Scalar > > &V) |
alpha[j]*beta*U(j) + V(j) - > V(j), for j = 0 ,,, More... | |
template<class Scalar > | |
void | update (const MultiVectorBase< Scalar > &U, const ArrayView< const Scalar > &alpha, Scalar beta, const Ptr< MultiVectorBase< Scalar > > &V) |
U(j) + alpha[j]*beta*V(j) - > V(j), for j = 0 ,,, U.domain()->dim()-1. More... | |
template<class Scalar > | |
void | linear_combination (const ArrayView< const Scalar > &alpha, const ArrayView< const Ptr< const MultiVectorBase< Scalar > > > &X, const Scalar &beta, const Ptr< MultiVectorBase< Scalar > > &Y) |
Y.col(j)(i) = beta*Y.col(j)(i) + sum( alpha[k]*X[k].col(j)(i), k=0...m-1 ) , for i = 0...Y->range()->dim()-1 , j = 0...Y->domain()->dim()-1 . More... | |
template<class Scalar > | |
void | randomize (Scalar l, Scalar u, const Ptr< MultiVectorBase< Scalar > > &V) |
Generate a random multi-vector with elements uniformly distributed elements. More... | |
template<class Scalar > | |
void | Vt_S (const Ptr< MultiVectorBase< Scalar > > &Z, const Scalar &alpha) |
Z(i,j) *= alpha, i = 0...Z->range()->dim()-1, j = 0...Z->domain()->dim()-1 . More... | |
template<class Scalar > | |
void | Vp_S (const Ptr< MultiVectorBase< Scalar > > &Z, const Scalar &alpha) |
Z(i,j) += alpha, i = 0...Z->range()->dim()-1, j = 0...Z->domain()->dim()-1 . More... | |
template<class Scalar > | |
void | Vp_V (const Ptr< MultiVectorBase< Scalar > > &Z, const MultiVectorBase< Scalar > &X) |
Z(i,j) += X(i,j), i = 0...Z->range()->dim()-1, j = 0...Z->domain()->dim()-1 . More... | |
template<class Scalar > | |
void | V_VpV (const Ptr< MultiVectorBase< Scalar > > &Z, const MultiVectorBase< Scalar > &X, const MultiVectorBase< Scalar > &Y) |
Z(i,j) = X(i,j) + Y(i,j), i = 0...Z->range()->dim()-1, j = 0...Z->domain()->dim()-1 . More... | |
template<class Scalar > | |
void | V_VmV (const Ptr< MultiVectorBase< Scalar > > &Z, const MultiVectorBase< Scalar > &X, const MultiVectorBase< Scalar > &Y) |
Z(i,j) = X(i,j) - Y(i,j), i = 0...Z->range()->dim()-1, j = 0...Z->domain()->dim()-1 . More... | |
template<class Scalar > | |
void | V_StVpV (const Ptr< MultiVectorBase< Scalar > > &Z, const Scalar &alpha, const MultiVectorBase< Scalar > &X, const MultiVectorBase< Scalar > &Y) |
Z(i,j) = alpha*X(i,j) + Y(i), i = 0...z->space()->dim()-1 , , j = 0...Z->domain()->dim()-1. More... | |
Related Functions inherited from Thyra::LinearOpBase< Scalar > | |
template<class Scalar > | |
bool | isFullyUninitialized (const LinearOpBase< Scalar > &M) |
Determines if a linear operator is in the "Fully Uninitialized" state or not. More... | |
template<class Scalar > | |
bool | isPartiallyInitialized (const LinearOpBase< Scalar > &M) |
Determines if a linear operator is in the "Partially Initialized" state or not. More... | |
template<class Scalar > | |
bool | isFullyInitialized (const LinearOpBase< Scalar > &M) |
Determines if a linear operator is in the "Fully Initialized" state or not. More... | |
template<class Scalar > | |
bool | opSupported (const LinearOpBase< Scalar > &M, EOpTransp M_trans) |
Determines if an operation is supported for a single scalar type. More... | |
template<class Scalar > | |
void | apply (const LinearOpBase< Scalar > &M, const EOpTransp M_trans, const MultiVectorBase< Scalar > &X, const Ptr< MultiVectorBase< Scalar > > &Y, const Scalar alpha=static_cast< Scalar >(1.0), const Scalar beta=static_cast< Scalar >(0.0)) |
Non-member function call for M.apply(...) . More... | |
void | apply (const LinearOpBase< double > &M, const EOpTransp M_trans, const MultiVectorBase< double > &X, const Ptr< MultiVectorBase< double > > &Y, const double alpha=1.0, const double beta=0.0) |
Calls apply<double>(...) . More... | |
Minimal mathematical functions | |
void | assign (const VectorBase< Scalar > &x) |
Vector assignment: More... | |
void | randomize (Scalar l, Scalar u) |
Random vector generation: More... | |
void | update (Scalar alpha, const VectorBase< Scalar > &x) |
AXPY: More... | |
void | linear_combination (const ArrayView< const Scalar > &alpha, const ArrayView< const Ptr< const VectorBase< Scalar > > > &x, const Scalar &beta) |
Linear combination: More... | |
Scalar | dot (const VectorBase< Scalar > &x) const |
Euclidean dot product: result = x^H * this . More... | |
Teuchos::ScalarTraits< Scalar > ::magnitudeType | norm_1 () const |
One (1) norm: result = ||v||1 . More... | |
Teuchos::ScalarTraits< Scalar > ::magnitudeType | norm_2 () const |
Euclidean (2) norm: result = ||v||2 . More... | |
Teuchos::ScalarTraits< Scalar > ::magnitudeType | norm_2 (const VectorBase< Scalar > &x) const |
Weighted Euclidean (2) norm: result = ||v||2 . More... | |
Teuchos::ScalarTraits< Scalar > ::magnitudeType | norm_inf () const |
Infinity norm: result = ||v||inf . More... | |
Space membership | |
virtual RCP< const VectorSpaceBase< Scalar > > | space () const =0 |
Return a smart pointer to the vector space that this vector belongs to. More... | |
Reduction/Transformation operator support | |
void | applyOp (const RTOpPack::RTOpT< Scalar > &op, const ArrayView< const Ptr< const VectorBase< Scalar > > > &vecs, const ArrayView< const Ptr< VectorBase< Scalar > > > &targ_vecs, const Ptr< RTOpPack::ReductTarget > &reduct_obj, const Ordinal global_offset) const |
Calls applyOpImpl(). More... | |
Vector Cloning | |
virtual RCP< VectorBase< Scalar > > | clone_v () const =0 |
Returns a seprate cloned copy of *this vector with the same values but different storage. More... | |
Explicit sub-vector access | |
void | acquireDetachedView (const Range1D &rng, RTOpPack::ConstSubVectorView< Scalar > *sub_vec) const |
Calls acquireDetachedVectorViewImpl(). More... | |
void | releaseDetachedView (RTOpPack::ConstSubVectorView< Scalar > *sub_vec) const |
Calls releaseDetachedVectorViewImpl(). More... | |
void | acquireDetachedView (const Range1D &rng, RTOpPack::SubVectorView< Scalar > *sub_vec) |
Calls acquireNonconstDetachedVectorViewImpl(). More... | |
void | commitDetachedView (RTOpPack::SubVectorView< Scalar > *sub_vec) |
Calls commitDetachedView(). More... | |
void | setSubVector (const RTOpPack::SparseSubVectorT< Scalar > &sub_vec) |
Calls setSubVectorImpl(). More... | |
Protected virtual functions to be overridden by subclasses | |
virtual void | assignVecImpl (const VectorBase< Scalar > &x)=0 |
Virtual implementation for NVI assign. More... | |
virtual void | randomizeImpl (Scalar l, Scalar u)=0 |
Virtual implementation for NVI randomize. More... | |
virtual void | absImpl (const VectorBase< Scalar > &x)=0 |
Virtual implementation for NVI abs. More... | |
virtual void | reciprocalImpl (const VectorBase< Scalar > &x)=0 |
Virtual implementation for NVI reciprocal. More... | |
virtual void | eleWiseScaleImpl (const VectorBase< Scalar > &x)=0 |
Virtual implementation for NVI ele_wise_scale. More... | |
virtual void | updateVecImpl (Scalar alpha, const VectorBase< Scalar > &x)=0 |
Virtual implementation for NVI update. More... | |
virtual void | linearCombinationVecImpl (const ArrayView< const Scalar > &alpha, const ArrayView< const Ptr< const VectorBase< Scalar > > > &x, const Scalar &beta)=0 |
Virtual implementation for NVI linear_combination. More... | |
virtual Scalar | dotImpl (const VectorBase< Scalar > &x) const =0 |
Virtual implementation for NVI dot. More... | |
virtual Teuchos::ScalarTraits < Scalar >::magnitudeType | norm1Impl () const =0 |
Virtual implementation for NVI norm_1. More... | |
virtual Teuchos::ScalarTraits < Scalar >::magnitudeType | norm2Impl () const =0 |
Virtual implementation for NVI norm_2. More... | |
virtual Teuchos::ScalarTraits < Scalar >::magnitudeType | norm2WeightedImpl (const VectorBase< Scalar > &x) const =0 |
Virtual implementation for NVI norm_2 (weighted). More... | |
virtual Teuchos::ScalarTraits < Scalar >::magnitudeType | normInfImpl () const =0 |
Virtual implementation for NVI norm_inf. More... | |
virtual void | applyOpImpl (const RTOpPack::RTOpT< Scalar > &op, const ArrayView< const Ptr< const VectorBase< Scalar > > > &vecs, const ArrayView< const Ptr< VectorBase< Scalar > > > &targ_vecs, const Ptr< RTOpPack::ReductTarget > &reduct_obj, const Ordinal global_offset) const =0 |
Apply a reduction/transformation operator over a set of vectors: op(op(v[0]...v[nv-1],z[0]...z[nz-1]),(*reduct_obj)) -> z[0]...z[nz-1],(*reduct_obj) . More... | |
virtual void | acquireDetachedVectorViewImpl (const Range1D &rng, RTOpPack::ConstSubVectorView< Scalar > *sub_vec) const =0 |
Get a non-mutable explicit view of a sub-vector. More... | |
virtual void | releaseDetachedVectorViewImpl (RTOpPack::ConstSubVectorView< Scalar > *sub_vec) const =0 |
Free an explicit view of a sub-vector. More... | |
virtual void | acquireNonconstDetachedVectorViewImpl (const Range1D &rng, RTOpPack::SubVectorView< Scalar > *sub_vec)=0 |
Get a mutable explicit view of a sub-vector. More... | |
virtual void | commitNonconstDetachedVectorViewImpl (RTOpPack::SubVectorView< Scalar > *sub_vec)=0 |
Commit changes for a mutable explicit view of a sub-vector. More... | |
virtual void | setSubVectorImpl (const RTOpPack::SparseSubVectorT< Scalar > &sub_vec)=0 |
Set a specific sub-vector. More... | |
Additional Inherited Members | |
Public Member Functions inherited from Thyra::MultiVectorBase< Scalar > | |
void | assign (Scalar alpha) |
V = alpha. More... | |
void | assign (const MultiVectorBase< Scalar > &mv) |
V = mv. More... | |
void | scale (Scalar alpha) |
void | update (Scalar alpha, const MultiVectorBase< Scalar > &mv) |
void | linear_combination (const ArrayView< const Scalar > &alpha, const ArrayView< const Ptr< const MultiVectorBase< Scalar > > > &mv, const Scalar &beta) |
Y.col(j)(i) = beta*Y.col(j)(i) + sum( alpha[k]*X[k].col(j)(i), More... | |
void | dots (const MultiVectorBase< Scalar > &mv, const ArrayView< Scalar > &prods) const |
Column-wise Euclidean dot product. More... | |
void | norms_1 (const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) const |
Column-wise 1-norms. More... | |
void | norms_2 (const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) const |
Column-wise 2-norms. More... | |
void | norms_inf (const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) const |
Column-wise infinity-norms. More... | |
RCP< const VectorBase< Scalar > > | col (Ordinal j) const |
Calls colImpl(). More... | |
RCP< VectorBase< Scalar > > | col (Ordinal j) |
Calls nonconstColImpl(). More... | |
RCP< const MultiVectorBase < Scalar > > | subView (const Range1D &colRng) const |
Calls contigSubViewImpl(). More... | |
RCP< MultiVectorBase< Scalar > > | subView (const Range1D &colRng) |
Calls nonconstContigSubViewImpl(). More... | |
RCP< const MultiVectorBase < Scalar > > | subView (const ArrayView< const int > &cols) const |
nonContigSubViewImpl(). More... | |
RCP< MultiVectorBase< Scalar > > | subView (const ArrayView< const int > &cols) |
nonconstNonContigSubViewImpl(). More... | |
void | applyOp (const RTOpPack::RTOpT< Scalar > &primary_op, const ArrayView< const Ptr< const MultiVectorBase< Scalar > > > &multi_vecs, const ArrayView< const Ptr< MultiVectorBase< Scalar > > > &targ_multi_vecs, const ArrayView< const Ptr< RTOpPack::ReductTarget > > &reduct_objs, const Ordinal primary_global_offset) const |
Calls mvMultiReductApplyOpImpl(). More... | |
void | applyOp (const RTOpPack::RTOpT< Scalar > &primary_op, const RTOpPack::RTOpT< Scalar > &secondary_op, const ArrayView< const Ptr< const MultiVectorBase< Scalar > > > &multi_vecs, const ArrayView< const Ptr< MultiVectorBase< Scalar > > > &targ_multi_vecs, const Ptr< RTOpPack::ReductTarget > &reduct_obj, const Ordinal primary_global_offset) const |
mvSingleReductApplyOpImpl(). More... | |
void | acquireDetachedView (const Range1D &rowRng, const Range1D &colRng, RTOpPack::ConstSubMultiVectorView< Scalar > *sub_mv) const |
Calls acquireDetachedMultiVectorViewImpl(). More... | |
void | releaseDetachedView (RTOpPack::ConstSubMultiVectorView< Scalar > *sub_mv) const |
Calls releaseDetachedMultiVectorViewImpl(). More... | |
void | acquireDetachedView (const Range1D &rowRng, const Range1D &colRng, RTOpPack::SubMultiVectorView< Scalar > *sub_mv) |
Calls acquireNonconstDetachedMultiVectorViewImpl(). More... | |
void | commitDetachedView (RTOpPack::SubMultiVectorView< Scalar > *sub_mv) |
Calls commitNonconstDetachedMultiVectorViewImpl(). More... | |
virtual RCP< MultiVectorBase < Scalar > > | clone_mv () const =0 |
Clone the multi-vector object (if supported). More... | |
RCP< const LinearOpBase< Scalar > > | clone () const |
This function is simply overridden to return this->clone_mv() . More... | |
Public Member Functions inherited from Thyra::LinearOpBase< Scalar > | |
virtual RCP< const VectorSpaceBase< Scalar > > | range () const =0 |
Return a smart pointer for the range space for this operator. More... | |
virtual RCP< const VectorSpaceBase< Scalar > > | domain () const =0 |
Return a smart pointer for the domain space for this operator. More... | |
bool | opSupported (EOpTransp M_trans) const |
Return if the M_trans operation of apply() is supported or not. More... | |
void | apply (const EOpTransp M_trans, const MultiVectorBase< Scalar > &X, const Ptr< MultiVectorBase< Scalar > > &Y, const Scalar alpha, const Scalar beta) const |
Apply the linear operator to a multi-vector : Y = alpha*op(M)*X + beta*Y . More... | |
Public Member Functions inherited from Thyra::RowStatLinearOpBase< Scalar > | |
bool | rowStatIsSupported (const RowStatLinearOpBaseUtils::ERowStat rowStat) const |
Determine if a given row stat is supported. More... | |
void | getRowStat (const RowStatLinearOpBaseUtils::ERowStat rowStat, const Ptr< VectorBase< Scalar > > &rowStatVec) const |
Get some statistics about a supported row. More... | |
Public Member Functions inherited from Thyra::ScaledLinearOpBase< Scalar > | |
bool | supportsScaleLeft () const |
Determines if this objects supports left scaling. More... | |
bool | supportsScaleRight () const |
Determines if this objects supports right scaling. More... | |
void | scaleLeft (const VectorBase< Scalar > &row_scaling) |
Left scales operator with diagonal scaling operator. More... | |
void | scaleRight (const VectorBase< Scalar > &col_scaling) |
Right scales operator with diagonal scaling operator. More... | |
Protected Member Functions inherited from Thyra::MultiVectorBase< Scalar > | |
void | absRowSum (const Teuchos::Ptr< Thyra::VectorBase< Scalar > > &output) const |
void | absColSum (const Teuchos::Ptr< Thyra::VectorBase< Scalar > > &output) const |
virtual void | assignImpl (Scalar alpha)=0 |
Virtual implementation for NVI assign(Scalar). More... | |
virtual void | assignMultiVecImpl (const MultiVectorBase< Scalar > &mv)=0 |
Virtual implementation for NVI assign(MV). More... | |
virtual void | scaleImpl (Scalar alpha)=0 |
Virtual implementation for NVI scale(). More... | |
virtual void | updateImpl (Scalar alpha, const MultiVectorBase< Scalar > &mv)=0 |
Virtual implementation for NVI update(). More... | |
virtual void | linearCombinationImpl (const ArrayView< const Scalar > &alpha, const ArrayView< const Ptr< const MultiVectorBase< Scalar > > > &mv, const Scalar &beta)=0 |
Virtual implementation for NVI linear_combination(). More... | |
virtual void | dotsImpl (const MultiVectorBase< Scalar > &mv, const ArrayView< Scalar > &prods) const =0 |
Virtual implementation for NVI dots(). More... | |
virtual void | norms1Impl (const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) const =0 |
Virtual implementation for NVI norms_1(). More... | |
virtual void | norms2Impl (const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) const =0 |
Virtual implementation for NVI norms_2(). More... | |
virtual void | normsInfImpl (const ArrayView< typename ScalarTraits< Scalar >::magnitudeType > &norms) const =0 |
Virtual implementation for NVI norms_inf(). More... | |
virtual RCP< const VectorBase < Scalar > > | colImpl (Ordinal j) const |
Return a non-changeable view of a constituent column vector. More... | |
virtual RCP< VectorBase< Scalar > > | nonconstColImpl (Ordinal j)=0 |
Return a changeable view of a constituent column vector. More... | |
virtual RCP< const MultiVectorBase< Scalar > > | contigSubViewImpl (const Range1D &colRng) const =0 |
Return a non-changeable sub-view of a contiguous set of columns of the this multi-vector. More... | |
virtual RCP< MultiVectorBase < Scalar > > | nonconstContigSubViewImpl (const Range1D &colRng)=0 |
Return a changeable sub-view of a contiguous set of columns of the this multi-vector. More... | |
virtual RCP< const MultiVectorBase< Scalar > > | nonContigSubViewImpl (const ArrayView< const int > &cols) const =0 |
Return a non-changeable sub-view of a non-contiguous set of columns of this multi-vector. More... | |
virtual RCP< MultiVectorBase < Scalar > > | nonconstNonContigSubViewImpl (const ArrayView< const int > &cols)=0 |
Return a changeable sub-view of a non-contiguous set of columns of this multi-vector. More... | |
virtual void | mvMultiReductApplyOpImpl (const RTOpPack::RTOpT< Scalar > &primary_op, const ArrayView< const Ptr< const MultiVectorBase< Scalar > > > &multi_vecs, const ArrayView< const Ptr< MultiVectorBase< Scalar > > > &targ_multi_vecs, const ArrayView< const Ptr< RTOpPack::ReductTarget > > &reduct_objs, const Ordinal primary_global_offset) const =0 |
Apply a reduction/transformation operator column by column and return an array of the reduction objects. More... | |
virtual void | mvSingleReductApplyOpImpl (const RTOpPack::RTOpT< Scalar > &primary_op, const RTOpPack::RTOpT< Scalar > &secondary_op, const ArrayView< const Ptr< const MultiVectorBase< Scalar > > > &multi_vecs, const ArrayView< const Ptr< MultiVectorBase< Scalar > > > &targ_multi_vecs, const Ptr< RTOpPack::ReductTarget > &reduct_obj, const Ordinal primary_global_offset) const =0 |
Apply a reduction/transformation operator column by column and reduce the intermediate reduction objects into a single reduction object. More... | |
virtual void | acquireDetachedMultiVectorViewImpl (const Range1D &rowRng, const Range1D &colRng, RTOpPack::ConstSubMultiVectorView< Scalar > *sub_mv) const =0 |
Get a non-changeable explicit view of a sub-multi-vector. More... | |
virtual void | releaseDetachedMultiVectorViewImpl (RTOpPack::ConstSubMultiVectorView< Scalar > *sub_mv) const =0 |
Free a non-changeable explicit view of a sub-multi-vector. More... | |
virtual void | acquireNonconstDetachedMultiVectorViewImpl (const Range1D &rowRng, const Range1D &colRng, RTOpPack::SubMultiVectorView< Scalar > *sub_mv)=0 |
Get a changeable explicit view of a sub-multi-vector. More... | |
virtual void | commitNonconstDetachedMultiVectorViewImpl (RTOpPack::SubMultiVectorView< Scalar > *sub_mv)=0 |
Commit changes for a changeable explicit view of a sub-multi-vector. More... | |
virtual bool | rowStatIsSupportedImpl (const RowStatLinearOpBaseUtils::ERowStat rowStat) const |
virtual void | getRowStatImpl (const RowStatLinearOpBaseUtils::ERowStat rowStat, const Ptr< VectorBase< Scalar > > &rowStatVec) const |
virtual bool | supportsScaleLeftImpl () const |
virtual bool | supportsScaleRightImpl () const |
virtual void | scaleLeftImpl (const VectorBase< Scalar > &row_scaling) |
virtual void | scaleRightImpl (const VectorBase< Scalar > &col_scaling) |
Protected Member Functions inherited from Thyra::LinearOpBase< Scalar > | |
virtual bool | opSupportedImpl (EOpTransp M_trans) const =0 |
Override in subclass. More... | |
virtual void | applyImpl (const EOpTransp M_trans, const MultiVectorBase< Scalar > &X, const Ptr< MultiVectorBase< Scalar > > &Y, const Scalar alpha, const Scalar beta) const =0 |
Override in subclass. More... | |
Protected Member Functions inherited from Thyra::RowStatLinearOpBase< Scalar > | |
Protected Member Functions inherited from Thyra::ScaledLinearOpBase< Scalar > |
Abstract interface for finite-dimensional dense vectors.
This interface contains the minimal set of operations needed to define an abstract vector.
The main feature of this interface is the function applyOp()
which is used to implement all types of vector reduction and transformation operations (RTOp) through RTOp operators . Every standard (i.e. BLAS) and nearly every non-standard element-wise operation that can be performed on a set of vectors can be performed efficiently through reduction/transformation operators. More standard vector operations could be included in this interface and allow for specialized implementations but, in general, assuming the sub-vectors are large enough, such implementations would not be significantly faster than those implemented through reduction/transformation operators. There are some operations however that can not always be efficiently implemented with reduction/transformation operators and a few of these important operations are included in this interface. The applyOp()
function allows to client to specify a sub-set of the vector elements to include in reduction/transformation operation. This greatly increases the generality of this vector interface as vector objects can be used as sub objects in larger composite vectors and sub-views of a vector can be created.
There already exists RTOp-based implementations of several standard vector operations and some convenience functions that wrap these operators and call applyOp()
. These wrapper functions can be found here
This interface also allows a client to extract a sub-set of vector coefficients in an explicit form as non-mutable RTOpPack::ConstSubVectorView
or mutable RTOpPack::SubVectorView
objects using the acquireDetachedView()
functions. In general, this is a very inefficient thing to do and should be avoided. However, there are some situations where getting explicit access to the coefficients of a vector is a very reasonable and efficient thing to do (i.e. for vectors in the domain of a multi-vector for instance) and therefore this functionality is supported. These views and the parent vector follow the state behavior outlined here.
Note that client code in general should not directly call the above explicit sub-vector access functions but should use the utility classes ConstDetachedVectorView
and DetachedVectorView
instead since these are easier an safer in the event that an exception is thrown.
In addition to being able to extract an explicit non-mutable and mutable views of some (small?) sub-set of elements, this interface allows a client to set sub-vectors using setSubVector()
.
It is also worth mentioning that that this VectorBase
interface class also inherits from MultiVectorBase
so that every VectorBase
object is also a MultiVectorBase
object. This allows any piece of code that accepts MultiVectorBase
objects to automatically accept VectorBase
objects as well. In addition, since MultiVectorBase
inherits from LinearOpBase
, then this means that every vector is also a linear operator.
The support subclass VectorDefaultBase
provides default implementations for as many functions as possible and should be considered a first choice for creating concrete subclasses.
Definition at line 370 of file Thyra_OperatorVectorTypes.hpp.
|
inline |
Vector assignment:
y(i) = x(i), i = 0...y->space()->dim()-1
.
NVI function.
Definition at line 166 of file Thyra_VectorBase.hpp.
|
inline |
Random vector generation:
v(i) = rand(l,u), , i = 1...v->space()->dim()
.
The elements v(i)
are randomly generated between [l,u]
.
NVI function.
Definition at line 178 of file Thyra_VectorBase.hpp.
|
inline |
AXPY:
y(i) = alpha * x(i) + y(i), i = 0...y->space()->dim()-1
.
NVI function.
Definition at line 190 of file Thyra_VectorBase.hpp.
|
inline |
Linear combination:
y(i) = beta*y(i) + sum( alpha[k]*x[k](i), k=0...m-1 ), i = 0...y->space()->dim()-1
.
m | [in] Number of vectors x[] |
alpha | [in] Array (length m ) of input scalars. |
x | [in] Array (length m ) of input vectors. |
beta | [in] Scalar multiplier for y |
y | [in/out] Target vector that is the result of the linear combination. |
This function implements a general linear combination:
y(i) = beta*y(i) + alpha[0]*x[0](i) + alpha[1]*x[1](i) + ... + alpha[m-1]*x[m-1](i), i = 0...y->space()->dim()-1
NVI function.
Definition at line 221 of file Thyra_VectorBase.hpp.
|
inline |
Euclidean dot product: result = x^H * this
.
Definition at line 231 of file Thyra_VectorBase.hpp.
|
inline |
One (1) norm: result = ||v||1
.
Definition at line 238 of file Thyra_VectorBase.hpp.
|
inline |
Euclidean (2) norm: result = ||v||2
.
NVI function.
Definition at line 246 of file Thyra_VectorBase.hpp.
|
inline |
Weighted Euclidean (2) norm: result = ||v||2
.
NVI function.
Definition at line 254 of file Thyra_VectorBase.hpp.
|
inline |
Infinity norm: result = ||v||inf
.
NVI function.
Definition at line 262 of file Thyra_VectorBase.hpp.
|
pure virtual |
Return a smart pointer to the vector space that this vector belongs to.
A return value of space().get()==NULL
is a flag that *this
is not fully initialized.
If return.get()!=NULL
, then it is required that the object referenced by *return.get()
must have lifetime that extends past the lifetime of the returned smart pointer object. However, the object referenced by *return.get()
may change if *this
is modified so this reference should not be maintained for too long.
New Behavior! It is required that the VectorSpaceBase
object embedded in return
must be valid past the lifetime of *this
vector object.
Implemented in Thyra::DefaultProductVector< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, Thyra::DefaultClusteredSpmdProductVector< Scalar >, and Thyra::SpmdVectorDefaultBase< Scalar >.
|
inline |
|
pure virtual |
Returns a seprate cloned copy of *this
vector with the same values but different storage.
This function performs a deep copy and assigns the values to the returned copy. It basically performs:
This function exists to be consistent with the clone functions clone()
which creates a LinearOpBase
object and clone_mv()
which creates a MultiVectorBase
object. However, this function is not really necessary because the capability to create a new vector object is already present in the VectorSpaceBase
object returned from this->space()
followed by the assignment function as shown above.
Subclasses should only consider overriding this function if there they want to be very sophisticated and implement some form of lazy evaluation in case the created object might not actually be modified before it is destroyed. However, this is not advised.
Implemented in Thyra::VectorDefaultBase< Scalar >.
|
inline |
Calls acquireDetachedVectorViewImpl().
Temporary NVI function.
Definition at line 349 of file Thyra_VectorBase.hpp.
|
inline |
Calls releaseDetachedVectorViewImpl().
Temporary NVI function.
Definition at line 358 of file Thyra_VectorBase.hpp.
|
inline |
Calls acquireNonconstDetachedVectorViewImpl().
Temporary NVI function.
Definition at line 367 of file Thyra_VectorBase.hpp.
|
inline |
Calls commitDetachedView().
Temporary NVI function.
Definition at line 376 of file Thyra_VectorBase.hpp.
|
inline |
Calls setSubVectorImpl().
Temporary NVI function.
Definition at line 385 of file Thyra_VectorBase.hpp.
|
protectedpure virtual |
Virtual implementation for NVI assign.
Implemented in Thyra::VectorDefaultBase< Scalar >.
|
protectedpure virtual |
Virtual implementation for NVI randomize.
Implemented in Thyra::DefaultMultiVectorProductVector< Scalar >, Thyra::VectorDefaultBase< Scalar >, and Thyra::TpetraVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.
|
protectedpure virtual |
Virtual implementation for NVI abs.
Implemented in Thyra::DefaultProductVector< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, Thyra::VectorDefaultBase< Scalar >, and Thyra::TpetraVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.
|
protectedpure virtual |
Virtual implementation for NVI reciprocal.
Implemented in Thyra::DefaultProductVector< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, Thyra::VectorDefaultBase< Scalar >, and Thyra::TpetraVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.
|
protectedpure virtual |
Virtual implementation for NVI ele_wise_scale.
Implemented in Thyra::DefaultProductVector< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, Thyra::VectorDefaultBase< Scalar >, and Thyra::TpetraVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.
|
protectedpure virtual |
Virtual implementation for NVI update.
Implemented in Thyra::VectorDefaultBase< Scalar >.
|
protectedpure virtual |
Virtual implementation for NVI linear_combination.
Implemented in Thyra::VectorDefaultBase< Scalar >.
|
protectedpure virtual |
Virtual implementation for NVI dot.
Implemented in Thyra::VectorDefaultBase< Scalar >.
|
protectedpure virtual |
Virtual implementation for NVI norm_1.
Implemented in Thyra::VectorDefaultBase< Scalar >.
|
protectedpure virtual |
Virtual implementation for NVI norm_2.
Implemented in Thyra::VectorDefaultBase< Scalar >.
|
protectedpure virtual |
Virtual implementation for NVI norm_2 (weighted).
Implemented in Thyra::DefaultProductVector< Scalar >, Thyra::VectorDefaultBase< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, and Thyra::TpetraVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.
|
protectedpure virtual |
Virtual implementation for NVI norm_inf.
Implemented in Thyra::VectorDefaultBase< Scalar >.
|
protectedpure virtual |
Apply a reduction/transformation operator over a set of vectors: op(op(v[0]...v[nv-1],z[0]...z[nz-1]),(*reduct_obj)) -> z[0]...z[nz-1],(*reduct_obj)
.
Preconditions:
this->space().get()!=NULL
(throw std::logic_error
) The vector *this
that this function is called on is assumed to be one of the vectors in v[0]...v[nv-1],z[0]...z[nz-1]
. This function is generally should not called directly by a client but instead the client should call the nonmember function Thyra::applyOp()
.
See the documentation for the nonmember function Thyra::applyOp()
for a description of what this function does.
Implemented in Thyra::DefaultProductVector< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, Thyra::DefaultClusteredSpmdProductVector< Scalar >, Thyra::SpmdVectorDefaultBase< Scalar >, and Thyra::TpetraVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.
|
protectedpure virtual |
Get a non-mutable explicit view of a sub-vector.
rng | [in] The range of the elements to extract the sub-vector view. |
sub_vec | [in/out] View of the sub-vector. Prior to the first call to this function, sub_vec->set_uninitialized() must be called. Technically *sub_vec owns the memory but this memory can be freed only by calling this->releaseDetachedView(sub_vec) . |
Preconditions:
this->space().get()!=NULL
(throw std::logic_error
) !rng.full_range()
] (rng.ubound() < this->space()->dim()) == true
(throw std::out_of_range
) Postconditions:
*sub_vec
contains an explicit non-mutable view to the elements in the range full_range(rng,0,this->space()->dim()-1)
This is only a transient view of a sub-vector that is to be immediately used and then released with a call to releaseDetachedView()
.
Note that calling this function might require some dynamic memory allocations and temporary memory. Therefore, it is critical that this->releaseDetachedView(sub_vec)
is called to clean up memory and avoid memory leaks after the sub-vector is used.
Heads Up! Note that client code in general should not directly call this function but should instead use the utility class ConstDetachedVectorView
which will also take care of calling releaseDetachedView()
.
If this->acquireDetachedView(...,sub_vec)
was previously called on sub_vec
then it may be possible to reuse this memory if it is sufficiently sized. The user is encouraged to make multiple calls to this->acquireDetachedView(...,sub_vec)
before this->releaseDetachedView(sub_vec)
to finally clean up all of the memory. Of course, the same sub_vec
object must be passed to the same vector object for this to work correctly.
Implemented in Thyra::VectorDefaultBase< Scalar >, Thyra::DefaultProductVector< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, Thyra::SpmdVectorDefaultBase< Scalar >, and Thyra::TpetraVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.
|
protectedpure virtual |
Free an explicit view of a sub-vector.
sub_vec | [in/out] The memory referred to by sub_vec->values() will be released if it was allocated and *sub_vec will be zeroed out using sub_vec->set_uninitialized() . |
Preconditions:
this->space().get()!=NULL
(throw std::logic_error
) sub_vec
must have been passed through a call to this->acquireDetachedView(...,sub_vec)
Postconditions:
RTOpPack::ConstSubVectorView::set_uninitialized()
for sub_vec
The sub-vector view must have been allocated by this->acquireDetachedView()
first.
Implemented in Thyra::VectorDefaultBase< Scalar >, Thyra::DefaultProductVector< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, and Thyra::SpmdVectorDefaultBase< Scalar >.
|
protectedpure virtual |
Get a mutable explicit view of a sub-vector.
rng | [in] The range of the elements to extract the sub-vector view. |
sub_vec | [in/out] Mutable view of the sub-vector. Prior to the first call to this function sub_vec->set_uninitialized() must have been called for the correct behavior. Technically *sub_vec owns the memory but this memory must be committed and freed by calling this->commitDetachedView(sub_vec) after the client is finished modifying the view. |
Preconditions:
this->space().get()!=NULL
(throw std::logic_error
) !rng.full_range()
] rng.ubound() < this->space()->dim()
(throw std::out_of_range
) Postconditions:
*sub_vec
contains an explicit mutable view to the elements in the range full_range(rng,0,this->space()->dim()-1)
This is only a transient view of a sub-vector that is to be immediately used and then committed back with a call to commitDetachedView()
.
Note that calling this function might require some internal allocations and temporary memory. Therefore, it is critical that this->commitDetachedView(sub_vec)
is called to commit the changed entries, clean up memory, and avoid memory leaks after the sub-vector is modified.
Heads Up! Note that client code in general should not directly call this function but should instead use the utility class DetachedVectorView
which will also take care of calling commitDetachedView()
.
If this->acquireDetachedView(...,sub_vec)
was previously called on sub_vec
then it may be possible to reuse this memory if it is sufficiently sized. The user is encouraged to make multiple calls to this->acquireDetachedView(...,sub_vec)
before this->commitDetachedView(sub_vec)
is called to finally clean up all of the memory. Of course the same sub_vec
object must be passed to the same vector object for this to work correctly.
Changes to the underlying sub-vector are not guaranteed to become permanent until this->acquireDetachedView(...,sub_vec)
is called again, or this->commitDetachedView(sub_vec)
is called.
Implemented in Thyra::VectorDefaultBase< Scalar >, Thyra::DefaultProductVector< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, Thyra::SpmdVectorDefaultBase< Scalar >, and Thyra::TpetraVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.
|
protectedpure virtual |
Commit changes for a mutable explicit view of a sub-vector.
sub_vec | [in/out] The data in sub_vec->values() will be written back internal storage and the memory referred to by sub_vec->values() will be released if it was allocated and *sub_vec will be zeroed out using sub_vec->set_uninitialized() . |
Preconditions:
this->space().get()!=NULL
(throw std::logic_error
) sub_vec
must have been passed through a call to this->acquireDetachedView(...,sub_vec)
Postconditions:
RTOpPack::SubVectorView::set_uninitialized()
for sub_vec
*this
will be updated according the the changes made to sub_vec
The sub-vector view must have been allocated by this->acquireDetachedView()
first.
Implemented in Thyra::VectorDefaultBase< Scalar >, Thyra::DefaultProductVector< Scalar >, Thyra::DefaultMultiVectorProductVector< Scalar >, Thyra::SpmdVectorDefaultBase< Scalar >, and Thyra::TpetraVector< Scalar, LocalOrdinal, GlobalOrdinal, Node >.
|
protectedpure virtual |
Set a specific sub-vector.
sub_vec | [in] Represents the elements in the sub-vector to be set. |
Preconditions:
this->space().get()!=NULL
(throw std::logic_error
) sub_vec.globalOffset() + sub_vec.subDim() < this->space()->dim()
(throw std::out_of_range
) Postconditions:
[sub_vec.globalOffset(),sub_vec.globalOffset()+sub_vec.subDim()-1]
in *this
are set to 0.0 except for those that have that have entries in sub_vec
which are set to the values specified by (*this)(sub_vec.globalOffset()+vec.localOffset()+sub_vec.indices()[sub_vec.indicesStride()*k]) = vec.values[vec.valueStride()*k]
, for k = 0..sub_vec.subNz()-1
After this function returns, the corresponding elements in *this
vector object will be set equal to those in the input view sub_vec
.
Implemented in Thyra::VectorDefaultBase< Scalar >, Thyra::DefaultProductVector< Scalar >, and Thyra::DefaultMultiVectorProductVector< Scalar >.
|
related |
Apply a reduction/transformation operator over a set of vectors: op(op(v[0]...v[nv-1],z[0]...z[nz-1]),(*reduct_obj)) -> z[0]...z[nz-1],(*reduct_obj)
.
op | [in] Reduction/transformation operator to apply over each sub-vector and assemble the intermediate targets into reduct_obj (if reduct_obj != RTOp_REDUCT_OBJ_NULL ). |
vecs | [in] Array (length num_vecs ) of a set of pointers to non-mutable vectors to include in the operation. The order of these vectors is significant to op . If vecs.size()==0 , then op is called with no non-mutable vectors. |
targ_vecs | [in] Array (length num_targ_vecs ) of a set of pointers to mutable vectors to include in the operation. The order of these vectors is significant to op . If targ_vecs.size()==0 , then op is called with no mutable vectors. |
reduct_obj | [in/out] Target object of the reduction operation. This object must have been created by the op.reduct_obj_create_raw() function first. The reduction operation will be added to *reduct_obj if *reduct_obj has already been through a reduction. By allowing the info in *reduct_obj to be added to the reduction over all of these vectors, the reduction operation can be accumulated over a set of abstract vectors which can be useful for implementing composite vectors for instance. If op.get_reduct_type_num_entries(...) returns num_values == 0 , num_indexes == 0 and num_chars == 0 then reduct_obj must be set to null and no reduction will be performed. |
global_offset | [in] (default = 0) The offset applied to the included vector elements. |
Preconditions:
[vecs.size() > 0
] vecs[k]->space()->isCompatible(*this->space()) == true
, for k = 0...vecs.size()-1
(throw Exceptions::IncompatibleVectorSpaces
)
[targ_vecs.size() > 0
] targ_vecs[k]->space()->isCompatible(*this->space()) == true
, for k = 0...targ_vecs.size()-1
(throw Exceptions::IncompatibleVectorSpaces
)
[targ_vecs.size() > 0
] The vectors pointed to by targ_vecs[k]
, for k = 0...targ_vecs.size()-1
must not alias each other or any of the vectors vecs[k]
, for k = 0...vecs.size()-1
. You have be warned!!!!
global_offset >= 0
(throw std::invalid_argument
)
Postconditions:
The vectors in targ_vecs[]
may be modified as determined by the definition of op
.
[reduct_obj!=null
] The reduction object reduct_obj
contains the combined reduction from the input state of reduct_obj
and the reductions that where accumulated during this this function invocation.
Definition at line 770 of file Thyra_VectorBase.hpp.
|
related |
Sum of vector elements: result = sum( v(i), i = 0...v.space()->dim()-1 )
.
|
related |
Scalar product result = <x,y>
.
Returns x.space()->scalarProd(x,y)
.
|
related |
Inner/Scalar product result = <x,y>
.
Returns x.space()->scalarProd(x,y)
.
|
related |
Natural norm: result = sqrt(<v,v>)
.
Returns Teuchos::ScalarTraits<Scalar>::squareroot(v.space()->scalarProd(v,v))
.
|
related |
One (1) norm: result = ||v||1
.
|
related |
Euclidean (2) norm: result = ||v||2
.
|
related |
Weighted Euclidean (2) norm: result = sqrt( sum( w(i)*conj(v(i))*v(i)) )
.
|
related |
Infinity norm: result = ||v||inf
.
|
related |
Dot product: result = conj(x)'*y
.
|
related |
Get single element: result = v(i)
.
|
related |
Set single element: v(i) = alpha
.
|
related |
Assign all elements to a scalar: y(i) = alpha, i = 0...y->space()->dim()-1
.
|
related |
Vector assignment: y(i) = x(i), i = 0...y->space()->dim()-1
.
|
related |
Add a scalar to all elements: y(i) += alpha, i = 0...y->space()->dim()-1
.
|
related |
Scale all elements by a scalar: y(i) *= alpha, i = 0...y->space()->dim()-1
.
This takes care of the special cases of alpha == 0.0
(set y = 0.0
) and alpha == 1.0
(don't do anything).
|
related |
Element-wise absolute value: y(i) = abs(x(i)), i = 0...y->space()->dim()-1
.
|
related |
Element-wise reciprocal: y(i) = 1/x(i), i = 0...y->space()->dim()-1
.
|
related |
Element-wise product update: y(i) += alpha * x(i) * v(i), i = 0...y->space()->dim()-1
.
|
related |
Element-wise maximum: y(i) = alpha * max(x(i), v(i)), i = 0...y->space()->dim()-1
.
|
related |
Element-wise conjugate product update: y(i) += alpha * conj(x(i)) * v(i), i = 0...y->space()->dim()-1
.
|
related |
Element-wise scaling: y(i) *= x(i), i = 0...y->space()->dim()-1
.
|
related |
Element-wise product update: y(i) += alpha * x(i) * v(i), i = 0...y->space()->dim()-1
.
|
related |
Element-wise product update: y(i) *= alpha * x(i), i = 0...y->space()->dim()-1
.
|
related |
Element-wise maximum update: y(i) = alpha * max(x(i), y(i)), i = 0...y->space()->dim()-1
.
|
related |
Element-wise product update: y(i) *= alpha * x(i), i = 0...y->space()->dim()-1
.
|
related |
Element-wise division update: y(i) += alpha * x(i) / v(i), i = 0...y->space()->dim()-1
.
|
related |
Linear combination: y(i) = beta*y(i) + sum( alpha[k]*x[k](i), k=0...m-1 ), i = 0...y->space()->dim()-1
.
m | [in] Number of vectors x[] |
alpha | [in] Array (length m ) of input scalars. |
x | [in] Array (length m ) of input vectors. |
beta | [in] Scalar multiplier for y |
y | [in/out] Target vector that is the result of the linear combination. |
This function implements a general linear combination:
y(i) = beta*y(i) + alpha[0]*x[0](i) + alpha[1]*x[1](i) + ... + alpha[m-1]*x[m-1](i), i = 0...y->space()->dim()-1
|
related |
Seed the random number generator used in randomize()
.
s | [in] The seed for the random number generator. |
Note, this just calls Teuchos::TOpRandomize<Scalar>::set_static_seed(s)
.
|
related |
Random vector generation: v(i) = rand(l,u), , i = 1...v->space()->dim()
.
The elements v->getEle(i)
are randomly generated between [l,u]
.
The seed is set using the above seed_randomize()
function.
|
related |
Assign all elements to a scalar: y(i) = alpha, i = 0...y->space()->dim()-1
.
|
related |
Vector assignment: y(i) = x(i), i = 0...y->space()->dim()-1
.
|
related |
Add a scalar to all elements: y(i) += alpha, i = 0...y->space()->dim()-1
.
|
related |
Scale all elements by a scalar: y(i) *= alpha, i = 0...y->space()->dim()-1
.
This takes care of the special cases of alpha == 0.0
(set y = 0.0
) and alpha == 1.0
(don't do anything).
|
related |
Assign scaled vector: y(i) = alpha * x(i), i = 0...y->space()->dim()-1
.
|
related |
AXPY: y(i) = alpha * x(i) + y(i), i = 0...y->space()->dim()-1
.
|
related |
y(i) = x(i) + beta*y(i), i = 0...y->space()->dim()-1
.
|
related |
y(i) = x(i), i = 0...y->space()->dim()-1
.
|
related |
y(i) = alpha, i = 0...y->space()->dim()-1
.
|
related |
z(i) = x(i) + y(i), i = 0...z->space()->dim()-1
.
|
related |
z(i) = x(i) - y(i), i = 0...z->space()->dim()-1
.
|
related |
z(i) = alpha*x(i) + y(i), i = 0...z->space()->dim()-1
.
|
related |
z(i) = x(i) + alpha*y(i), i = 0...z->space()->dim()-1
.
|
related |
z(i) = alpha*x(i) + beta*y(i), i = 0...z->space()->dim()-1
.
|
related |
Min element: result = min{ x(i), i = 0...x.space()->dim()-1 }
.
|
related |
Min element and its index: Returns maxEle = x(k)
and maxIndex = k
such that x(k) <= x(i)
for all i = 0...x.space()->dim()-1
.
x | [in] Input vector. |
minEle | [out] The minimum element value. |
maxindex | [out] The global index of the minimum element. If there is more than one element with the maximum entry then this returns the lowest index in order to make the output independent of the order of operations. |
Preconditions:
minEle!=NULL
minIndex!=NULL
|
related |
Minimum element greater than some bound and its index: Returns minEle = x(k)
and minIndex = k
such that x(k) <= x(i)
for all i
where x(i) > bound
.
x | [in] Input vector. |
bound | [in] The upper bound |
minEle | [out] The minimum element value as defined above. |
minIndex | [out] The global index of the maximum element. If there is more than one element with the minimum value then this returns the lowest index in order to make the output independent of the order of operations. If no entries are less than bound then minIndex < 0 on return. |
Preconditions:
minEle!=NULL
minIndex!=NULL
Postconditions:
*minIndex > 0
then such an element was found. *minIndex < 0
then no such element was found.
|
related |
Max element: result = max{ x(i), i = 1...n }
.
|
related |
Max element and its index: Returns maxEle = x(k)
and maxIndex = k
such that x(k) >= x(i)
for i = 0...x.space()->dim()-1
.
x | [in] Input vector. |
maxEle | [out] The maximum element value. |
maxindex | [out] The global index of the maximum element. If there is more than one element with the maximum value then this returns the lowest index in order to make the output independent of the order of operations. |
Preconditions:
maxEle!=NULL
maxIndex!=NULL
|
related |
Max element less than bound and its index: Returns maxEle = x(k)
and maxIndex = k
such that x(k) >= x(i)
for all i
where x(i) < bound
.
x | [in] Input vector. |
bound | [in] The upper bound |
maxEle | [out] The maximum element value as defined above. |
maxindex | [out] The global index of the maximum element. If there is more than one element with the maximum index then this returns the lowest index in order to make the output independent of the order of operations. If no entries are less than bound then minIndex < 0 on return. |
Preconditions:
maxEle!=NULL
maxIndex!=NULL
Postconditions:
*maxIndex > 0
then such an element was found. *maxIndex < 0
then no such element was found.