9 #include "Teuchos_UnitTestHarness.hpp" 
   10 #include "Teuchos_XMLParameterListHelpers.hpp" 
   11 #include "Teuchos_TimeMonitor.hpp" 
   12 #include "Teuchos_DefaultComm.hpp" 
   14 #include "Tempus_config.hpp" 
   15 #include "Tempus_IntegratorBasic.hpp" 
   16 #include "Tempus_IntegratorAdjointSensitivity.hpp" 
   18 #include "Thyra_VectorStdOps.hpp" 
   19 #include "Thyra_MultiVectorStdOps.hpp" 
   21 #include "../TestModels/SinCosModel.hpp" 
   22 #include "../TestUtils/Tempus_ConvergenceTestUtils.hpp" 
   24 #include "Stratimikos_DefaultLinearSolverBuilder.hpp" 
   25 #include "Thyra_LinearOpWithSolveFactoryHelpers.hpp" 
   26 #include "Thyra_DefaultMultiVectorProductVector.hpp" 
   27 #include "Thyra_DefaultProductVector.hpp" 
   34 namespace Tempus_Test {
 
   37 using Teuchos::ParameterList;
 
   38 using Teuchos::sublist;
 
   39 using Teuchos::getParametersFromXmlFile;
 
   49   std::vector<double> StepSize;
 
   50   std::vector<double> ErrorNorm;
 
   51   const int nTimeStepSizes = 7;
 
   54   Teuchos::RCP<const Teuchos::Comm<int> > comm =
 
   55     Teuchos::DefaultComm<int>::getComm();
 
   56   Teuchos::RCP<Teuchos::FancyOStream> my_out =
 
   57     Teuchos::fancyOStream(Teuchos::rcpFromRef(std::cout));
 
   58   my_out->setProcRankAndSize(comm->getRank(), comm->getSize());
 
   59   my_out->setOutputToRootOnly(0);
 
   60   for (
int n=0; n<nTimeStepSizes; n++) {
 
   63     RCP<ParameterList> pList =
 
   64       getParametersFromXmlFile(
"Tempus_BackwardEuler_SinCos.xml");
 
   67     RCP<ParameterList> scm_pl = sublist(pList, 
"SinCosModel", 
true);
 
   68     RCP<SinCosModel<double> > model =
 
   74     RCP<ParameterList> pl = sublist(pList, 
"Tempus", 
true);
 
   75     ParameterList& sens_pl = pl->sublist(
"Sensitivities");
 
   76     sens_pl.set(
"Mass Matrix Is Identity", 
false); 
 
   77     ParameterList& interp_pl =
 
   78       pl->sublist(
"Default Integrator").sublist(
"Solution History").sublist(
"Interpolator");
 
   79     interp_pl.set(
"Interpolator Type", 
"Lagrange");
 
   80     interp_pl.set(
"Order", 0);
 
   83     pl->sublist(
"Default Stepper").set(
"Use FSAL", 
false);
 
   87     pl->sublist(
"Default Stepper")
 
   88            .set(
"Initial Condition Consistency Check", 
false);
 
   91     pl->sublist(
"Default Integrator")
 
   92        .sublist(
"Time Step Control").set(
"Initial Time Step", dt);
 
   93     RCP<Tempus::IntegratorAdjointSensitivity<double> > integrator =
 
   94       Tempus::integratorAdjointSensitivity<double>(pl, model);
 
   95     order = integrator->getStepper()->getOrder();
 
   98     double t0 = pl->sublist(
"Default Integrator")
 
   99       .sublist(
"Time Step Control").get<
double>(
"Initial Time");
 
  100     RCP<const Thyra::VectorBase<double> > x0 =
 
  101       model->getExactSolution(t0).get_x();
 
  102     const int num_param = model->get_p_space(0)->dim();
 
  103     RCP<Thyra::MultiVectorBase<double> > DxDp0 =
 
  104       Thyra::createMembers(model->get_x_space(), num_param);
 
  105     for (
int i=0; i<num_param; ++i)
 
  106       Thyra::assign(DxDp0->col(i).ptr(),
 
  107                     *(model->getExactSensSolution(i, t0).get_x()));
 
  108     integrator->initializeSolutionHistory(t0, x0, Teuchos::null, Teuchos::null,
 
  109                                 DxDp0, Teuchos::null, Teuchos::null);
 
  112     bool integratorStatus = integrator->advanceTime();
 
  113     TEST_ASSERT(integratorStatus)
 
  116     double time = integrator->getTime();
 
  117     double timeFinal =pl->sublist(
"Default Integrator")
 
  118        .sublist(
"Time Step Control").get<
double>(
"Final Time");
 
  119     TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
 
  124     RCP<const Thyra::VectorBase<double> > x = integrator->getX();
 
  125     RCP<const Thyra::MultiVectorBase<double> > DgDp = integrator->getDgDp();
 
  126     RCP<Thyra::MultiVectorBase<double> > DxDp =
 
  127       Thyra::createMembers(model->get_x_space(), num_param);
 
  129       Thyra::ConstDetachedMultiVectorView<double> dgdp_view(*DgDp);
 
  130       Thyra::DetachedMultiVectorView<double> dxdp_view(*DxDp);
 
  131       const int num_g = DgDp->domain()->dim();
 
  132       for (
int i=0; i<num_g; ++i)
 
  133         for (
int j=0; j<num_param; ++j)
 
  134           dxdp_view(i,j) = dgdp_view(j,i);
 
  136     RCP<const Thyra::VectorBase<double> > x_exact =
 
  137       model->getExactSolution(time).get_x();
 
  138     RCP<Thyra::MultiVectorBase<double> > DxDp_exact =
 
  139       Thyra::createMembers(model->get_x_space(), num_param);
 
  140     for (
int i=0; i<num_param; ++i)
 
  141       Thyra::assign(DxDp_exact->col(i).ptr(),
 
  142                     *(model->getExactSensSolution(i, time).get_x()));
 
  145     if (comm->getRank() == 0 && n == nTimeStepSizes-1) {
 
  146       typedef Thyra::DefaultProductVector<double> DPV;
 
  147       typedef Thyra::DefaultMultiVectorProductVector<double> DMVPV;
 
  149       std::ofstream ftmp(
"Tempus_BackwardEuler_SinCos_AdjSens.dat");
 
  150       RCP<const SolutionHistory<double> > solutionHistory =
 
  151         integrator->getSolutionHistory();
 
  152       for (
int i=0; i<solutionHistory->getNumStates(); i++) {
 
  153         RCP<const SolutionState<double> > solutionState = (*solutionHistory)[i];
 
  154         const double time_i = solutionState->getTime();
 
  155         RCP<const DPV> x_prod_plot =
 
  156           Teuchos::rcp_dynamic_cast<
const DPV>(solutionState->getX());
 
  157         RCP<const Thyra::VectorBase<double> > x_plot =
 
  158           x_prod_plot->getVectorBlock(0);
 
  159         RCP<const DMVPV > adjoint_prod_plot =
 
  160           Teuchos::rcp_dynamic_cast<
const DMVPV>(x_prod_plot->getVectorBlock(1));
 
  161         RCP<const Thyra::MultiVectorBase<double> > adjoint_plot =
 
  162           adjoint_prod_plot->getMultiVector();
 
  163         RCP<const Thyra::VectorBase<double> > x_exact_plot =
 
  164           model->getExactSolution(time_i).get_x();
 
  165         ftmp << std::fixed << std::setprecision(7)
 
  167              << std::setw(11) << get_ele(*(x_plot), 0)
 
  168              << std::setw(11) << get_ele(*(x_plot), 1)
 
  169              << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 0)
 
  170              << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 1)
 
  171              << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 0)
 
  172              << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 1)
 
  173              << std::setw(11) << get_ele(*(x_exact_plot), 0)
 
  174              << std::setw(11) << get_ele(*(x_exact_plot), 1)
 
  181     RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
 
  182     RCP<Thyra::MultiVectorBase<double> > DxDpdiff = DxDp->clone_mv();
 
  183     Thyra::V_StVpStV(xdiff.ptr(), 1.0, *x_exact, -1.0, *(x));
 
  184     Thyra::V_VmV(DxDpdiff.ptr(), *DxDp_exact, *DxDp);
 
  185     StepSize.push_back(dt);
 
  186     double L2norm = Thyra::norm_2(*xdiff);
 
  188     Teuchos::Array<double> L2norm_DxDp(num_param);
 
  189     Thyra::norms_2(*DxDpdiff, L2norm_DxDp());
 
  190     for (
int i=0; i<num_param; ++i)
 
  191       L2norm += L2norm_DxDp[i]*L2norm_DxDp[i];
 
  192     L2norm = std::sqrt(L2norm);
 
  193     ErrorNorm.push_back(L2norm);
 
  201   double slope = computeLinearRegressionLogLog<double>(StepSize, ErrorNorm);
 
  202   *my_out << 
"  Stepper = BackwardEuler" << std::endl;
 
  203   *my_out << 
"  =========================" << std::endl;
 
  204   *my_out << 
"  Expected order: " << order << std::endl;
 
  205   *my_out << 
"  Observed order: " << slope << std::endl;
 
  206   *my_out << 
"  =========================" << std::endl;
 
  207   TEST_FLOATING_EQUALITY( slope, order, 0.015 );
 
  208   TEST_FLOATING_EQUALITY( ErrorNorm[0], 0.151746, 1.0e-4 );
 
  210   if (comm->getRank() == 0) {
 
  211     std::ofstream ftmp(
"Tempus_BackwardEuler_SinCos_AdjSens-Error.dat");
 
  212     double error0 = 0.8*ErrorNorm[0];
 
  213     for (
int n=0; n<nTimeStepSizes; n++) {
 
  214       ftmp << StepSize[n]  << 
"   " << ErrorNorm[n] << 
"   " 
  215            << error0*(StepSize[n]/StepSize[0]) << std::endl;
 
Sine-Cosine model problem from Rythmos. This is a canonical Sine-Cosine differential equation  with a...
 
TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)
 
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
 
Solution state for integrators and steppers. SolutionState contains the metadata for solutions and th...