| 
    Stokhos
    Development
    
   | 
 
Transforms a non-orthogonal multivariate basis to an orthogonal one using the Gram-Schmit procedure. More...
#include <Stokhos_GramSchmidtBasis.hpp>


Additional Inherited Members | |
  Public Member Functions inherited from Stokhos::OrthogPolyBasis< ordinal_type, value_type > | |
| OrthogPolyBasis () | |
| Constructor.  | |
| virtual | ~OrthogPolyBasis () | 
| Destructor.  | |
| virtual ordinal_type | order () const =0 | 
| Return order of basis.  | |
| virtual ordinal_type | dimension () const =0 | 
| Return dimension of basis.  | |
| virtual ordinal_type | size () const =0 | 
| Return total size of basis.  | |
| virtual const Teuchos::Array < value_type > &  | norm_squared () const =0 | 
| Return array storing norm-squared of each basis polynomial.  More... | |
| virtual const value_type & | norm_squared (ordinal_type i) const =0 | 
Return norm squared of basis polynomial i.  | |
| virtual Teuchos::RCP < Stokhos::Sparse3Tensor < ordinal_type, value_type > >  | computeTripleProductTensor () const =0 | 
| Compute triple product tensor.  More... | |
| 
virtual Teuchos::RCP < Stokhos::Sparse3Tensor < ordinal_type, value_type > >  | computeLinearTripleProductTensor () const =0 | 
| Compute linear triple product tensor where k = 0,1.  | |
| virtual value_type | evaluateZero (ordinal_type i) const =0 | 
Evaluate basis polynomial i at zero.  | |
| virtual void | evaluateBases (const Teuchos::ArrayView< const value_type > &point, Teuchos::Array< value_type > &basis_vals) const =0 | 
Evaluate basis polynomials at given point point.  More... | |
| virtual void | print (std::ostream &os) const =0 | 
Print basis to stream os.  | |
| virtual const std::string & | getName () const =0 | 
| Return string name of basis.  | |
Transforms a non-orthogonal multivariate basis to an orthogonal one using the Gram-Schmit procedure.
Given a basis 
 with an inner product defined by 
 where 
 and 
 are a set of 
 quadrature points and weights, this class generates a new basis 
 that satisfies 
.
NOTE: Currently on the classical Gram-Schmidt algorithm is implemented.
 1.8.5