ROL
|
Provides an interface for a convex combination of the expected value and the conditional value-at-risk using the expectation risk quadrangle. More...
#include <ROL_QuantileQuadrangle.hpp>
Public Member Functions | |
QuantileQuadrangle (Real prob, Real eps, ROL::Ptr< PlusFunction< Real > > &pf) | |
Constructor. More... | |
QuantileQuadrangle (Real prob, Real lam, Real eps, ROL::Ptr< PlusFunction< Real > > &pf) | |
Constructor. More... | |
QuantileQuadrangle (ROL::ParameterList &parlist) | |
Constructor. More... | |
Real | error (Real x, int deriv=0) |
Evaluate the scalar error function at x. More... | |
Real | regret (Real x, int deriv=0) |
Evaluate the scalar regret function at x. More... | |
void | check (void) |
Run default derivative tests for the scalar regret function. More... | |
Public Member Functions inherited from ROL::ExpectationQuad< Real > | |
virtual | ~ExpectationQuad (void) |
ExpectationQuad (void) | |
Private Member Functions | |
void | parseParameterList (ROL::ParameterList &parlist) |
void | checkInputs (void) const |
void | setParameters (void) |
Private Attributes | |
ROL::Ptr< PlusFunction< Real > > | pf_ |
Real | prob_ |
Real | lam_ |
Real | eps_ |
Real | alpha_ |
Real | beta_ |
Provides an interface for a convex combination of the expected value and the conditional value-at-risk using the expectation risk quadrangle.
The conditional value-at-risk (also called the average value-at-risk or the expected shortfall) with confidence level \(0\le \beta < 1\) is
\[ \mathcal{R}(X) = \inf_{t\in\mathbb{R}} \left\{ t + \frac{1}{1-\beta} \mathbb{E}\left[(X-t)_+\right] \right\} \]
where \((x)_+ = \max\{0,x\}\). If the distribution of \(X\) is continuous, then \(\mathcal{R}\) is the conditional expectation of \(X\) exceeding the \(\beta\)-quantile of \(X\) and the optimal \(t\) is the \(\beta\)-quantile. Additionally, \(\mathcal{R}\) is a law-invariant coherent risk measure.
This class defines a convex combination of expected value and the conditional value-at-risk using the expectation risk quadrangle. In this case, the scalar regret function is
\[ v(x) = \alpha (x)_+ - \lambda (-x)_+ \]
for \(\alpha > 1\) and \(0 \le \lambda < 1\). The associated confidence level for the conditional value-at-risk is
\[ \beta = \frac{\alpha-1}{\alpha-\lambda}. \]
This convex combination of expected value and the conditional value-at-risk is then realized as
\[ \mathcal{R}(X) = \inf_{t\in\mathbb{R}}\left\{ t + \mathbb{E}[v(X-t)] \right\}. \]
ROL implements this by augmenting the optimization vector \(x_0\) with the parameter \(t\), then minimizes jointly for \((x_0,t)\).
When using derivative-based optimization, the user can provide a smooth approximation of \((\cdot)_+\) using the ROL::PlusFunction class.
Definition at line 97 of file ROL_QuantileQuadrangle.hpp.
|
inline |
Constructor.
[in] | prob | is the confidence level |
[in] | eps | is the smoothing parameter for the plus function approximation |
[in] | pf | is the plus function or an approximation |
Definition at line 157 of file ROL_QuantileQuadrangle.hpp.
References ROL::QuantileQuadrangle< Real >::checkInputs(), and ROL::QuantileQuadrangle< Real >::setParameters().
|
inline |
Constructor.
[in] | prob | is the confidence level |
[in] | lam | is the convex combination parameter (coeff=0 corresponds to the expected value whereas coeff=1 corresponds to the conditional value-at-risk) |
[in] | eps | is the smoothing parameter for the plus function approximation |
[in] | pf | is the plus function or an approximation |
Definition at line 172 of file ROL_QuantileQuadrangle.hpp.
References ROL::QuantileQuadrangle< Real >::checkInputs(), and ROL::QuantileQuadrangle< Real >::setParameters().
|
inline |
Constructor.
[in] | parlist | is a parameter list specifying inputs |
parlist should contain sublists "SOL"->"Risk Measure"->"CVaR" and within the "CVaR" sublist should have the following parameters
Definition at line 190 of file ROL_QuantileQuadrangle.hpp.
References ROL::QuantileQuadrangle< Real >::checkInputs(), ROL::QuantileQuadrangle< Real >::parseParameterList(), and ROL::QuantileQuadrangle< Real >::setParameters().
|
inlineprivate |
Definition at line 109 of file ROL_QuantileQuadrangle.hpp.
References ROL::QuantileQuadrangle< Real >::eps_, ROL::QuantileQuadrangle< Real >::lam_, ROL::QuantileQuadrangle< Real >::pf_, and ROL::QuantileQuadrangle< Real >::prob_.
Referenced by ROL::QuantileQuadrangle< Real >::QuantileQuadrangle().
|
inlineprivate |
Definition at line 132 of file ROL_QuantileQuadrangle.hpp.
References ROL::QuantileQuadrangle< Real >::eps_, ROL::QuantileQuadrangle< Real >::lam_, ROL::QuantileQuadrangle< Real >::pf_, ROL::QuantileQuadrangle< Real >::prob_, and zero.
Referenced by ROL::QuantileQuadrangle< Real >::QuantileQuadrangle().
|
inlineprivate |
Definition at line 144 of file ROL_QuantileQuadrangle.hpp.
References ROL::QuantileQuadrangle< Real >::alpha_, ROL::QuantileQuadrangle< Real >::beta_, ROL::QuantileQuadrangle< Real >::lam_, and ROL::QuantileQuadrangle< Real >::prob_.
Referenced by ROL::QuantileQuadrangle< Real >::QuantileQuadrangle().
|
inlinevirtual |
Evaluate the scalar error function at x.
[in] | x | is the scalar input |
[in] | deriv | is the derivative order |
This function returns \(e(x)\) or a derivative of \(e(x)\).
Reimplemented from ROL::ExpectationQuad< Real >.
Definition at line 197 of file ROL_QuantileQuadrangle.hpp.
References ROL::QuantileQuadrangle< Real >::alpha_, ROL::QuantileQuadrangle< Real >::beta_, and ROL::QuantileQuadrangle< Real >::pf_.
Referenced by ROL::QuantileQuadrangle< Real >::regret().
|
inlinevirtual |
Evaluate the scalar regret function at x.
[in] | x | is the scalar input |
[in] | deriv | is the derivative order |
This function returns \(v(x)\) or a derivative of \(v(x)\).
Implements ROL::ExpectationQuad< Real >.
Definition at line 204 of file ROL_QuantileQuadrangle.hpp.
References ROL::QuantileQuadrangle< Real >::error(), and zero.
Referenced by ROL::QuantileQuadrangle< Real >::check().
|
inlinevirtual |
Run default derivative tests for the scalar regret function.
Reimplemented from ROL::ExpectationQuad< Real >.
Definition at line 211 of file ROL_QuantileQuadrangle.hpp.
References ROL::ExpectationQuad< Real >::check(), ROL::QuantileQuadrangle< Real >::eps_, ROL::QuantileQuadrangle< Real >::regret(), and zero.
|
private |
Definition at line 100 of file ROL_QuantileQuadrangle.hpp.
Referenced by ROL::QuantileQuadrangle< Real >::checkInputs(), ROL::QuantileQuadrangle< Real >::error(), and ROL::QuantileQuadrangle< Real >::parseParameterList().
|
private |
Definition at line 102 of file ROL_QuantileQuadrangle.hpp.
Referenced by ROL::QuantileQuadrangle< Real >::checkInputs(), ROL::QuantileQuadrangle< Real >::parseParameterList(), and ROL::QuantileQuadrangle< Real >::setParameters().
|
private |
Definition at line 103 of file ROL_QuantileQuadrangle.hpp.
Referenced by ROL::QuantileQuadrangle< Real >::checkInputs(), ROL::QuantileQuadrangle< Real >::parseParameterList(), and ROL::QuantileQuadrangle< Real >::setParameters().
|
private |
Definition at line 104 of file ROL_QuantileQuadrangle.hpp.
Referenced by ROL::QuantileQuadrangle< Real >::check(), ROL::QuantileQuadrangle< Real >::checkInputs(), and ROL::QuantileQuadrangle< Real >::parseParameterList().
|
private |
Definition at line 106 of file ROL_QuantileQuadrangle.hpp.
Referenced by ROL::QuantileQuadrangle< Real >::error(), and ROL::QuantileQuadrangle< Real >::setParameters().
|
private |
Definition at line 107 of file ROL_QuantileQuadrangle.hpp.
Referenced by ROL::QuantileQuadrangle< Real >::error(), and ROL::QuantileQuadrangle< Real >::setParameters().