ROL
Public Member Functions | Private Member Functions | Private Attributes | List of all members
ROL::QuantileQuadrangle< Real > Class Template Reference

Provides an interface for a convex combination of the expected value and the conditional value-at-risk using the expectation risk quadrangle. More...

#include <ROL_QuantileQuadrangle.hpp>

+ Inheritance diagram for ROL::QuantileQuadrangle< Real >:

Public Member Functions

 QuantileQuadrangle (Real prob, Real eps, ROL::Ptr< PlusFunction< Real > > &pf)
 Constructor. More...
 
 QuantileQuadrangle (Real prob, Real lam, Real eps, ROL::Ptr< PlusFunction< Real > > &pf)
 Constructor. More...
 
 QuantileQuadrangle (ROL::ParameterList &parlist)
 Constructor. More...
 
Real error (Real x, int deriv=0)
 Evaluate the scalar error function at x. More...
 
Real regret (Real x, int deriv=0)
 Evaluate the scalar regret function at x. More...
 
void check (void)
 Run default derivative tests for the scalar regret function. More...
 
- Public Member Functions inherited from ROL::ExpectationQuad< Real >
virtual ~ExpectationQuad (void)
 
 ExpectationQuad (void)
 

Private Member Functions

void parseParameterList (ROL::ParameterList &parlist)
 
void checkInputs (void) const
 
void setParameters (void)
 

Private Attributes

ROL::Ptr< PlusFunction< Real > > pf_
 
Real prob_
 
Real lam_
 
Real eps_
 
Real alpha_
 
Real beta_
 

Detailed Description

template<class Real>
class ROL::QuantileQuadrangle< Real >

Provides an interface for a convex combination of the expected value and the conditional value-at-risk using the expectation risk quadrangle.

The conditional value-at-risk (also called the average value-at-risk or the expected shortfall) with confidence level \(0\le \beta < 1\) is

\[ \mathcal{R}(X) = \inf_{t\in\mathbb{R}} \left\{ t + \frac{1}{1-\beta} \mathbb{E}\left[(X-t)_+\right] \right\} \]

where \((x)_+ = \max\{0,x\}\). If the distribution of \(X\) is continuous, then \(\mathcal{R}\) is the conditional expectation of \(X\) exceeding the \(\beta\)-quantile of \(X\) and the optimal \(t\) is the \(\beta\)-quantile. Additionally, \(\mathcal{R}\) is a law-invariant coherent risk measure.

This class defines a convex combination of expected value and the conditional value-at-risk using the expectation risk quadrangle. In this case, the scalar regret function is

\[ v(x) = \alpha (x)_+ - \lambda (-x)_+ \]

for \(\alpha > 1\) and \(0 \le \lambda < 1\). The associated confidence level for the conditional value-at-risk is

\[ \beta = \frac{\alpha-1}{\alpha-\lambda}. \]

This convex combination of expected value and the conditional value-at-risk is then realized as

\[ \mathcal{R}(X) = \inf_{t\in\mathbb{R}}\left\{ t + \mathbb{E}[v(X-t)] \right\}. \]

ROL implements this by augmenting the optimization vector \(x_0\) with the parameter \(t\), then minimizes jointly for \((x_0,t)\).

When using derivative-based optimization, the user can provide a smooth approximation of \((\cdot)_+\) using the ROL::PlusFunction class.

Definition at line 97 of file ROL_QuantileQuadrangle.hpp.

Constructor & Destructor Documentation

template<class Real >
ROL::QuantileQuadrangle< Real >::QuantileQuadrangle ( Real  prob,
Real  eps,
ROL::Ptr< PlusFunction< Real > > &  pf 
)
inline

Constructor.

Parameters
[in]probis the confidence level
[in]epsis the smoothing parameter for the plus function approximation
[in]pfis the plus function or an approximation

Definition at line 157 of file ROL_QuantileQuadrangle.hpp.

References ROL::QuantileQuadrangle< Real >::checkInputs(), and ROL::QuantileQuadrangle< Real >::setParameters().

template<class Real >
ROL::QuantileQuadrangle< Real >::QuantileQuadrangle ( Real  prob,
Real  lam,
Real  eps,
ROL::Ptr< PlusFunction< Real > > &  pf 
)
inline

Constructor.

Parameters
[in]probis the confidence level
[in]lamis the convex combination parameter (coeff=0 corresponds to the expected value whereas coeff=1 corresponds to the conditional value-at-risk)
[in]epsis the smoothing parameter for the plus function approximation
[in]pfis the plus function or an approximation

Definition at line 172 of file ROL_QuantileQuadrangle.hpp.

References ROL::QuantileQuadrangle< Real >::checkInputs(), and ROL::QuantileQuadrangle< Real >::setParameters().

template<class Real >
ROL::QuantileQuadrangle< Real >::QuantileQuadrangle ( ROL::ParameterList &  parlist)
inline

Constructor.

Parameters
[in]parlistis a parameter list specifying inputs

parlist should contain sublists "SOL"->"Risk Measure"->"CVaR" and within the "CVaR" sublist should have the following parameters

  • "Confidence Level" (between 0 and 1)
  • "Convex Combination Parameter" (between 0 and 1)
  • "Smoothing Parameter" (must be positive)
  • A sublist for plus function information.

Definition at line 190 of file ROL_QuantileQuadrangle.hpp.

References ROL::QuantileQuadrangle< Real >::checkInputs(), ROL::QuantileQuadrangle< Real >::parseParameterList(), and ROL::QuantileQuadrangle< Real >::setParameters().

Member Function Documentation

template<class Real >
void ROL::QuantileQuadrangle< Real >::parseParameterList ( ROL::ParameterList &  parlist)
inlineprivate
template<class Real >
void ROL::QuantileQuadrangle< Real >::checkInputs ( void  ) const
inlineprivate
template<class Real >
void ROL::QuantileQuadrangle< Real >::setParameters ( void  )
inlineprivate
template<class Real >
Real ROL::QuantileQuadrangle< Real >::error ( Real  x,
int  deriv = 0 
)
inlinevirtual

Evaluate the scalar error function at x.

Parameters
[in]xis the scalar input
[in]derivis the derivative order

This function returns \(e(x)\) or a derivative of \(e(x)\).

Reimplemented from ROL::ExpectationQuad< Real >.

Definition at line 197 of file ROL_QuantileQuadrangle.hpp.

References ROL::QuantileQuadrangle< Real >::alpha_, ROL::QuantileQuadrangle< Real >::beta_, and ROL::QuantileQuadrangle< Real >::pf_.

Referenced by ROL::QuantileQuadrangle< Real >::regret().

template<class Real >
Real ROL::QuantileQuadrangle< Real >::regret ( Real  x,
int  deriv = 0 
)
inlinevirtual

Evaluate the scalar regret function at x.

Parameters
[in]xis the scalar input
[in]derivis the derivative order

This function returns \(v(x)\) or a derivative of \(v(x)\).

Implements ROL::ExpectationQuad< Real >.

Definition at line 204 of file ROL_QuantileQuadrangle.hpp.

References ROL::QuantileQuadrangle< Real >::error(), and zero.

Referenced by ROL::QuantileQuadrangle< Real >::check().

template<class Real >
void ROL::QuantileQuadrangle< Real >::check ( void  )
inlinevirtual

Run default derivative tests for the scalar regret function.

Reimplemented from ROL::ExpectationQuad< Real >.

Definition at line 211 of file ROL_QuantileQuadrangle.hpp.

References ROL::ExpectationQuad< Real >::check(), ROL::QuantileQuadrangle< Real >::eps_, ROL::QuantileQuadrangle< Real >::regret(), and zero.

Member Data Documentation

template<class Real >
ROL::Ptr<PlusFunction<Real> > ROL::QuantileQuadrangle< Real >::pf_
private
template<class Real >
Real ROL::QuantileQuadrangle< Real >::prob_
private
template<class Real >
Real ROL::QuantileQuadrangle< Real >::lam_
private
template<class Real >
Real ROL::QuantileQuadrangle< Real >::eps_
private
template<class Real >
Real ROL::QuantileQuadrangle< Real >::alpha_
private
template<class Real >
Real ROL::QuantileQuadrangle< Real >::beta_
private

The documentation for this class was generated from the following file: