ROL
Classes | Public Member Functions | Private Types | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
ROL::PrimalDualInteriorPointResidual< Real > Class Template Reference

Symmetrized form of the KKT operator for the Type-EB problem with equality and bound multipliers. More...

#include <ROL_PrimalDualInteriorPointReducedResidual.hpp>

+ Inheritance diagram for ROL::PrimalDualInteriorPointResidual< Real >:

Classes

class  InFill
 
class  SafeDivide
 
class  SetZeros
 

Public Member Functions

 PrimalDualInteriorPointResidual (const ROL::Ptr< PENALTY > &penalty, const ROL::Ptr< CON > &con, const V &x, ROL::Ptr< V > &scratch)
 
void update (const Vector< Real > &x, bool flag=true, int iter=-1)
 Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
void value (V &c, const V &x, Real &tol)
 Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More...
 
void applyJacobian (V &jv, const V &v, const V &x, Real &tol)
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More...
 
int getNumberFunctionEvaluations (void) const
 
int getNumberGradientEvaluations (void) const
 
int getNumberConstraintEvaluations (void) const
 
 PrimalDualInteriorPointResidual (const ROL::Ptr< OBJ > &obj, const ROL::Ptr< CON > &con, const ROL::Ptr< BND > &bnd, const V &x, const ROL::Ptr< const V > &maskL, const ROL::Ptr< const V > &maskU, ROL::Ptr< V > &scratch, Real mu, bool symmetrize)
 
void update (const Vector< Real > &x, bool flag=true, int iter=-1)
 Update constraint functions. x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
void value (V &c, const V &x, Real &tol)
 Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More...
 
void applyJacobian (V &jv, const V &v, const V &x, Real &tol)
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More...
 
void reset (const Real mu)
 
int getNumberFunctionEvaluations (void) const
 
int getNumberGradientEvaluations (void) const
 
int getNumberConstraintEvaluations (void) const
 
- Public Member Functions inherited from ROL::Constraint< Real >
virtual ~Constraint (void)
 
 Constraint (void)
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
virtual void applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More...
 
virtual std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
 Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More...

 
virtual void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:

\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]

where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More...

 
void activate (void)
 Turn on constraints. More...
 
void deactivate (void)
 Turn off constraints. More...
 
bool isActivated (void)
 Check if constraints are on. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian. More...
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual void setParameter (const std::vector< Real > &param)
 

Private Types

typedef ROL::ParameterList PL
 
typedef Vector< Real > V
 
typedef PartitionedVector< Real > PV
 
typedef Objective< Real > OBJ
 
typedef Constraint< Real > CON
 
typedef BoundConstraint< Real > BND
 
typedef LinearOperator< Real > LOP
 
typedef InteriorPointPenalty
< Real > 
PENALTY
 
typedef Elementwise::ValueSet
< Real > 
ValueSet
 
typedef PV::size_type size_type
 
typedef ROL::ParameterList PL
 
typedef Vector< Real > V
 
typedef PartitionedVector< Real > PV
 
typedef Objective< Real > OBJ
 
typedef Constraint< Real > CON
 
typedef BoundConstraint< Real > BND
 
typedef Elementwise::ValueSet
< Real > 
ValueSet
 
typedef PV::size_type size_type
 

Private Member Functions

ROL::Ptr< VgetOptMult (V &vec)
 
ROL::Ptr< const VgetOptMult (const V &vec)
 

Private Attributes

ROL::Ptr< const Vx_
 
ROL::Ptr< const Vl_
 
ROL::Ptr< const Vzl_
 
ROL::Ptr< const Vzu_
 
ROL::Ptr< const Vxl_
 
ROL::Ptr< const Vxu_
 
const ROL::Ptr< const VmaskL_
 
const ROL::Ptr< const VmaskU_
 
ROL::Ptr< Vscratch_
 
const ROL::Ptr< PENALTYpenalty_
 
const ROL::Ptr< OBJobj_
 
const ROL::Ptr< CONcon_
 
const ROL::Ptr< BNDbnd_
 
Real mu_
 
bool symmetrize_
 
Real one_
 
Real zero_
 
int nfval_
 
int ngrad_
 
int ncval_
 
Elementwise::Multiply< Real > mult_
 
SafeDivide div_
 
SetZeros setZeros_
 
InFill inFill_
 

Static Private Attributes

static const size_type OPT = 0
 
static const size_type EQUAL = 1
 
static const size_type LOWER = 2
 
static const size_type UPPER = 3
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Constraint< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<class Real>
class ROL::PrimalDualInteriorPointResidual< Real >

Symmetrized form of the KKT operator for the Type-EB problem with equality and bound multipliers.

The system is symmetrized by multiplying through by

S = [ I 0 0 0 ] [ 0 I 0 0 ] [ 0 0 -inv(Zl) 0 ] [ 0 0 0 -inv(Zu) ]

Where Zl and Zu are diagonal matrices containing the lower and upper bound multipliers respectively

Infinite bounds have identically zero-valued lagrange multipliers.


Definition at line 111 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.

Member Typedef Documentation

template<class Real >
typedef ROL::ParameterList ROL::PrimalDualInteriorPointResidual< Real >::PL
private
template<class Real >
typedef Vector<Real> ROL::PrimalDualInteriorPointResidual< Real >::V
private
template<class Real >
typedef PartitionedVector<Real> ROL::PrimalDualInteriorPointResidual< Real >::PV
private
template<class Real >
typedef Objective<Real> ROL::PrimalDualInteriorPointResidual< Real >::OBJ
private
template<class Real >
typedef Constraint<Real> ROL::PrimalDualInteriorPointResidual< Real >::CON
private
template<class Real >
typedef BoundConstraint<Real> ROL::PrimalDualInteriorPointResidual< Real >::BND
private
template<class Real >
typedef LinearOperator<Real> ROL::PrimalDualInteriorPointResidual< Real >::LOP
private
template<class Real >
typedef InteriorPointPenalty<Real> ROL::PrimalDualInteriorPointResidual< Real >::PENALTY
private
template<class Real >
typedef Elementwise::ValueSet<Real> ROL::PrimalDualInteriorPointResidual< Real >::ValueSet
private
template<class Real >
typedef PV::size_type ROL::PrimalDualInteriorPointResidual< Real >::size_type
private
template<class Real >
typedef ROL::ParameterList ROL::PrimalDualInteriorPointResidual< Real >::PL
private

Definition at line 80 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
typedef Vector<Real> ROL::PrimalDualInteriorPointResidual< Real >::V
private

Definition at line 82 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
typedef PartitionedVector<Real> ROL::PrimalDualInteriorPointResidual< Real >::PV
private

Definition at line 83 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
typedef Objective<Real> ROL::PrimalDualInteriorPointResidual< Real >::OBJ
private

Definition at line 84 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
typedef Constraint<Real> ROL::PrimalDualInteriorPointResidual< Real >::CON
private

Definition at line 85 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
typedef BoundConstraint<Real> ROL::PrimalDualInteriorPointResidual< Real >::BND
private

Definition at line 86 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
typedef Elementwise::ValueSet<Real> ROL::PrimalDualInteriorPointResidual< Real >::ValueSet
private

Definition at line 88 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
typedef PV::size_type ROL::PrimalDualInteriorPointResidual< Real >::size_type
private

Definition at line 90 of file ROL_PrimalDualInteriorPointResidual.hpp.

Constructor & Destructor Documentation

template<class Real >
ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual ( const ROL::Ptr< PENALTY > &  penalty,
const ROL::Ptr< CON > &  con,
const V x,
ROL::Ptr< V > &  scratch 
)
inline
template<class Real >
ROL::PrimalDualInteriorPointResidual< Real >::PrimalDualInteriorPointResidual ( const ROL::Ptr< OBJ > &  obj,
const ROL::Ptr< CON > &  con,
const ROL::Ptr< BND > &  bnd,
const V x,
const ROL::Ptr< const V > &  maskL,
const ROL::Ptr< const V > &  maskU,
ROL::Ptr< V > &  scratch,
Real  mu,
bool  symmetrize 
)
inline

Member Function Documentation

template<class Real >
void ROL::PrimalDualInteriorPointResidual< Real >::update ( const Vector< Real > &  x,
bool  flag = true,
int  iter = -1 
)
inlinevirtual
template<class Real >
void ROL::PrimalDualInteriorPointResidual< Real >::value ( V c,
const V x,
Real &  tol 
)
inlinevirtual

Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).

Parameters
[out]cis the result of evaluating the constraint operator at x; a constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).


Implements ROL::Constraint< Real >.

Definition at line 196 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.

References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::penalty_, ROL::PrimalDualInteriorPointResidual< Real >::scratch_, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.

template<class Real >
void ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian ( V jv,
const V v,
const V x,
Real &  tol 
)
inlinevirtual

Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

  @param[out]      jv  is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector
  @param[in]       v   is an optimization-space vector
  @param[in]       x   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#77, where

\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 221 of file ROL_PrimalDualInteriorPointReducedResidual.hpp.

References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::obj_, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::scratch_, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::xl_, ROL::PrimalDualInteriorPointResidual< Real >::xu_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.

template<class Real >
int ROL::PrimalDualInteriorPointResidual< Real >::getNumberFunctionEvaluations ( void  ) const
inline
template<class Real >
int ROL::PrimalDualInteriorPointResidual< Real >::getNumberGradientEvaluations ( void  ) const
inline
template<class Real >
int ROL::PrimalDualInteriorPointResidual< Real >::getNumberConstraintEvaluations ( void  ) const
inline
template<class Real >
ROL::Ptr<V> ROL::PrimalDualInteriorPointResidual< Real >::getOptMult ( V vec)
inlineprivate
template<class Real >
ROL::Ptr<const V> ROL::PrimalDualInteriorPointResidual< Real >::getOptMult ( const V vec)
inlineprivate
template<class Real >
void ROL::PrimalDualInteriorPointResidual< Real >::update ( const Vector< Real > &  x,
bool  flag = true,
int  iter = -1 
)
inlinevirtual
template<class Real >
void ROL::PrimalDualInteriorPointResidual< Real >::value ( V c,
const V x,
Real &  tol 
)
inlinevirtual

Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).

Parameters
[out]cis the result of evaluating the constraint operator at x; a constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused

On return, \(\mathsf{c} = c(x)\), where \(\mathsf{c} \in \mathcal{C}\), \(\mathsf{x} \in \mathcal{X}\).


Implements ROL::Constraint< Real >.

Definition at line 217 of file ROL_PrimalDualInteriorPointResidual.hpp.

References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::div_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::maskL_, ROL::PrimalDualInteriorPointResidual< Real >::maskU_, ROL::PrimalDualInteriorPointResidual< Real >::mu_, ROL::PrimalDualInteriorPointResidual< Real >::mult_, ROL::PrimalDualInteriorPointResidual< Real >::ncval_, ROL::PrimalDualInteriorPointResidual< Real >::ngrad_, ROL::PrimalDualInteriorPointResidual< Real >::obj_, ROL::PrimalDualInteriorPointResidual< Real >::one_, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::scratch_, ROL::PrimalDualInteriorPointResidual< Real >::symmetrize_, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::xl_, ROL::PrimalDualInteriorPointResidual< Real >::xu_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.

template<class Real >
void ROL::PrimalDualInteriorPointResidual< Real >::applyJacobian ( V jv,
const V v,
const V x,
Real &  tol 
)
inlinevirtual

Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

  @param[out]      jv  is the result of applying the constraint Jacobian to @b v at @b x; a constraint-space vector
  @param[in]       v   is an optimization-space vector
  @param[in]       x   is the constraint argument; an optimization-space vector
  @param[in,out]   tol is a tolerance for inexact evaluations; currently unused

  On return, \form#77, where

\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).

The default implementation is a finite-difference approximation.


Reimplemented from ROL::Constraint< Real >.

Definition at line 314 of file ROL_PrimalDualInteriorPointResidual.hpp.

References ROL::PrimalDualInteriorPointResidual< Real >::con_, ROL::PrimalDualInteriorPointResidual< Real >::div_, ROL::PrimalDualInteriorPointResidual< Real >::EQUAL, ROL::PartitionedVector< Real >::get(), ROL::PrimalDualInteriorPointResidual< Real >::inFill_, ROL::PrimalDualInteriorPointResidual< Real >::l_, ROL::PrimalDualInteriorPointResidual< Real >::LOWER, ROL::PrimalDualInteriorPointResidual< Real >::maskL_, ROL::PrimalDualInteriorPointResidual< Real >::maskU_, ROL::PrimalDualInteriorPointResidual< Real >::mult_, ROL::PrimalDualInteriorPointResidual< Real >::obj_, ROL::PrimalDualInteriorPointResidual< Real >::OPT, ROL::PrimalDualInteriorPointResidual< Real >::scratch_, ROL::PrimalDualInteriorPointResidual< Real >::symmetrize_, ROL::PrimalDualInteriorPointResidual< Real >::UPPER, ROL::PrimalDualInteriorPointResidual< Real >::x_, ROL::PrimalDualInteriorPointResidual< Real >::xl_, ROL::PrimalDualInteriorPointResidual< Real >::xu_, ROL::PrimalDualInteriorPointResidual< Real >::zl_, and ROL::PrimalDualInteriorPointResidual< Real >::zu_.

template<class Real >
void ROL::PrimalDualInteriorPointResidual< Real >::reset ( const Real  mu)
inline
template<class Real >
int ROL::PrimalDualInteriorPointResidual< Real >::getNumberFunctionEvaluations ( void  ) const
inline
template<class Real >
int ROL::PrimalDualInteriorPointResidual< Real >::getNumberGradientEvaluations ( void  ) const
inline
template<class Real >
int ROL::PrimalDualInteriorPointResidual< Real >::getNumberConstraintEvaluations ( void  ) const
inline

Member Data Documentation

template<class Real >
static const size_type ROL::PrimalDualInteriorPointResidual< Real >::OPT = 0
staticprivate
template<class Real >
static const size_type ROL::PrimalDualInteriorPointResidual< Real >::EQUAL = 1
staticprivate
template<class Real >
static const size_type ROL::PrimalDualInteriorPointResidual< Real >::LOWER = 2
staticprivate
template<class Real >
static const size_type ROL::PrimalDualInteriorPointResidual< Real >::UPPER = 3
staticprivate
template<class Real >
ROL::Ptr< const V > ROL::PrimalDualInteriorPointResidual< Real >::x_
private
template<class Real >
ROL::Ptr< const V > ROL::PrimalDualInteriorPointResidual< Real >::l_
private
template<class Real >
ROL::Ptr< const V > ROL::PrimalDualInteriorPointResidual< Real >::zl_
private
template<class Real >
ROL::Ptr< const V > ROL::PrimalDualInteriorPointResidual< Real >::zu_
private
template<class Real >
ROL::Ptr< const V > ROL::PrimalDualInteriorPointResidual< Real >::xl_
private
template<class Real >
ROL::Ptr< const V > ROL::PrimalDualInteriorPointResidual< Real >::xu_
private
template<class Real >
const ROL::Ptr< const V > ROL::PrimalDualInteriorPointResidual< Real >::maskL_
private
template<class Real >
const ROL::Ptr< const V > ROL::PrimalDualInteriorPointResidual< Real >::maskU_
private
template<class Real >
ROL::Ptr< V > ROL::PrimalDualInteriorPointResidual< Real >::scratch_
private
template<class Real >
const ROL::Ptr<PENALTY> ROL::PrimalDualInteriorPointResidual< Real >::penalty_
private
template<class Real >
const ROL::Ptr< OBJ > ROL::PrimalDualInteriorPointResidual< Real >::obj_
private
template<class Real >
const ROL::Ptr< CON > ROL::PrimalDualInteriorPointResidual< Real >::con_
private
template<class Real >
const ROL::Ptr<BND> ROL::PrimalDualInteriorPointResidual< Real >::bnd_
private

Definition at line 101 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
Real ROL::PrimalDualInteriorPointResidual< Real >::mu_
private
template<class Real >
bool ROL::PrimalDualInteriorPointResidual< Real >::symmetrize_
private
template<class Real >
Real ROL::PrimalDualInteriorPointResidual< Real >::one_
private
template<class Real >
Real ROL::PrimalDualInteriorPointResidual< Real >::zero_
private

Definition at line 121 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
int ROL::PrimalDualInteriorPointResidual< Real >::nfval_
private
template<class Real >
int ROL::PrimalDualInteriorPointResidual< Real >::ngrad_
private
template<class Real >
int ROL::PrimalDualInteriorPointResidual< Real >::ncval_
private
template<class Real >
Elementwise::Multiply<Real> ROL::PrimalDualInteriorPointResidual< Real >::mult_
private
template<class Real >
SafeDivide ROL::PrimalDualInteriorPointResidual< Real >::div_
private
template<class Real >
SetZeros ROL::PrimalDualInteriorPointResidual< Real >::setZeros_
private

Definition at line 145 of file ROL_PrimalDualInteriorPointResidual.hpp.

template<class Real >
InFill ROL::PrimalDualInteriorPointResidual< Real >::inFill_
private

The documentation for this class was generated from the following files: