ROL
Public Member Functions | Private Member Functions | Private Attributes | List of all members
ROL::KLDivergence< Real > Class Template Reference

Provides an interface for the Kullback-Leibler distributionally robust expectation. More...

#include <ROL_KLDivergence.hpp>

+ Inheritance diagram for ROL::KLDivergence< Real >:

Public Member Functions

 KLDivergence (const Real eps=1.e-2)
 Constructor. More...
 
 KLDivergence (ROL::ParameterList &parlist)
 Constructor. More...
 
void initialize (const Vector< Real > &x)
 Initialize temporary variables. More...
 
void updateValue (Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
 Update internal storage for value computation. More...
 
Real getValue (const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
 Return risk measure value. More...
 
void updateGradient (Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
 Update internal risk measure storage for gradient computation. More...
 
void getGradient (Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
 Return risk measure (sub)gradient. More...
 
void updateHessVec (Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
 Update internal risk measure storage for Hessian-time-a-vector computation. More...
 
void getHessVec (Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
 Return risk measure Hessian-times-a-vector. More...
 
- Public Member Functions inherited from ROL::RandVarFunctional< Real >
virtual ~RandVarFunctional ()
 
 RandVarFunctional (void)
 
 weight_ (0)
 
void useStorage (bool storage)
 
void useHessVecStorage (bool storage)
 
virtual void setStorage (const Ptr< SampledScalar< Real >> &value_storage, const Ptr< SampledVector< Real >> &gradient_storage)
 
virtual void setHessVecStorage (const Ptr< SampledScalar< Real >> &gradvec_storage, const Ptr< SampledVector< Real >> &hessvec_storage)
 
virtual void resetStorage (bool flag=true)
 Reset internal storage. More...
 
virtual void setSample (const std::vector< Real > &point, const Real weight)
 
virtual Real computeStatistic (const Ptr< const std::vector< Real >> &xstat) const
 Compute statistic. More...
 

Private Member Functions

void checkInputs (void) const
 
Real exponential (const Real arg1, const Real arg2) const
 
Real exponential (const Real arg) const
 
Real power (const Real arg, const Real pow) const
 

Private Attributes

Real eps_
 
Real gval_
 
Real gvval_
 
Real hval_
 
ROL::Ptr< Vector< Real > > scaledGradient_
 
ROL::Ptr< Vector< Real > > scaledHessVec_
 
bool firstResetKLD_
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::RandVarFunctional< Real >
Real computeValue (Objective< Real > &obj, const Vector< Real > &x, Real &tol)
 
void computeGradient (Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
 
Real computeGradVec (Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 
void computeHessVec (Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 
- Protected Attributes inherited from ROL::RandVarFunctional< Real >
Real val_
 
Real gv_
 
Ptr< Vector< Real > > g_
 
Ptr< Vector< Real > > hv_
 
Ptr< Vector< Real > > dualVector_
 
bool firstReset_
 
std::vector< Real > point_
 
Real weight_
 

Detailed Description

template<class Real>
class ROL::KLDivergence< Real >

Provides an interface for the Kullback-Leibler distributionally robust expectation.

This class defines a risk measure \(\mathcal{R}\) which arises in distributionally robust stochastic programming. \(\mathcal{R}\) is given by

\[ \mathcal{R}(X) = \sup_{\vartheta\in\mathfrak{A}} \mathbb{E}[\vartheta X] \]

where \(\mathfrak{A}\) is called the ambiguity (or uncertainty) set and is defined by a constraint on the Kullback-Leibler divergence, i.e.,

\[ \mathfrak{A} = \{\vartheta\in\mathcal{X}^*\,:\, \mathbb{E}[\vartheta] = 1,\; \vartheta \ge 0,\;\text{and}\; \mathbb{E}[\vartheta\log(\vartheta)] \le \epsilon\}. \]

\(\mathcal{R}\) is a law-invariant, coherent risk measure. Moreover, by a duality argument, \(\mathcal{R}\) can be reformulated as

\[ \mathcal{R}(X) = \inf_{\lambda > 0}\left\{ \lambda \epsilon + \lambda\mathbb{E}\left[\exp\left( \frac{X}{\lambda}\right)\right]\right\}. \]

ROL implements this by augmenting the optimization vector \(x_0\) with the parameter \(\lambda\), then minimizes jointly for \((x_0,\lambda)\).

Definition at line 81 of file ROL_KLDivergence.hpp.

Constructor & Destructor Documentation

template<class Real >
ROL::KLDivergence< Real >::KLDivergence ( const Real  eps = 1.e-2)
inline

Constructor.

Parameters
[in]epsis the tolerance for the KL divergence constraint

Definition at line 118 of file ROL_KLDivergence.hpp.

References ROL::KLDivergence< Real >::checkInputs().

template<class Real >
ROL::KLDivergence< Real >::KLDivergence ( ROL::ParameterList &  parlist)
inline

Constructor.

Parameters
[in]parlistis a parameter list specifying inputs

parlist should contain sublists "SOL"->"Risk Measure"->"KL Divergence" and within the "KL Divergence" sublist should have the following parameters

  • "Threshold" (greater than 0)

Definition at line 131 of file ROL_KLDivergence.hpp.

References ROL::KLDivergence< Real >::checkInputs(), and ROL::KLDivergence< Real >::eps_.

Member Function Documentation

template<class Real >
void ROL::KLDivergence< Real >::checkInputs ( void  ) const
inlineprivate

Definition at line 107 of file ROL_KLDivergence.hpp.

References ROL::KLDivergence< Real >::eps_, and zero.

Referenced by ROL::KLDivergence< Real >::KLDivergence().

template<class Real >
void ROL::KLDivergence< Real >::initialize ( const Vector< Real > &  x)
inlinevirtual
template<class Real >
void ROL::KLDivergence< Real >::updateValue ( Objective< Real > &  obj,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
Real &  tol 
)
inlinevirtual

Update internal storage for value computation.

Parameters
[in]valis the value of the random variable objective function at the current sample point
[in]weightis the weight associated with the current sample point

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 151 of file ROL_KLDivergence.hpp.

References ROL::RandVarFunctional< Real >::computeValue(), ROL::KLDivergence< Real >::eps_, ROL::KLDivergence< Real >::exponential(), ROL::RandVarFunctional< Real >::val_, and ROL::RandVarFunctional< Real >::weight_.

template<class Real >
Real ROL::KLDivergence< Real >::getValue ( const Vector< Real > &  x,
const std::vector< Real > &  xstat,
SampleGenerator< Real > &  sampler 
)
inlinevirtual

Return risk measure value.

Parameters
[in]sampleris the ROL::SampleGenerator used to sample the objective function

Upon return, getValue returns \(\mathcal{R}(f(x_0))\) where \(f(x_0)\) denotes the random variable objective function evaluated at \(x_0\).

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 160 of file ROL_KLDivergence.hpp.

References ROL::KLDivergence< Real >::eps_, ROL::SampleGenerator< Real >::sumAll(), and ROL::RandVarFunctional< Real >::val_.

template<class Real >
void ROL::KLDivergence< Real >::updateGradient ( Objective< Real > &  obj,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
Real &  tol 
)
inlinevirtual

Update internal risk measure storage for gradient computation.

Parameters
[in]valis the value of the random variable objective function at the current sample point
[in]gis the gradient of the random variable objective function at the current sample point
[in]weightis the weight associated with the current sample point

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 171 of file ROL_KLDivergence.hpp.

References ROL::RandVarFunctional< Real >::computeGradient(), ROL::RandVarFunctional< Real >::computeValue(), ROL::RandVarFunctional< Real >::dualVector_, ROL::KLDivergence< Real >::eps_, ROL::KLDivergence< Real >::exponential(), ROL::RandVarFunctional< Real >::g_, ROL::KLDivergence< Real >::gval_, ROL::RandVarFunctional< Real >::val_, and ROL::RandVarFunctional< Real >::weight_.

template<class Real >
void ROL::KLDivergence< Real >::getGradient ( Vector< Real > &  g,
std::vector< Real > &  gstat,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
SampleGenerator< Real > &  sampler 
)
inlinevirtual

Return risk measure (sub)gradient.

Parameters
[out]gis the (sub)gradient of the risk measure
[in]sampleris the ROL::SampleGenerator used to sample the objective function

Upon return, getGradient returns \(\theta\in\partial\mathcal{R}(f(x_0))\) where \(f(x_0)\) denotes the random variable objective function evaluated at \(x_0\) and \(\partial\mathcal{R}(X)\) denotes the subdifferential of \(\mathcal{R}\) at \(X\).

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 183 of file ROL_KLDivergence.hpp.

References ROL::KLDivergence< Real >::eps_, ROL::RandVarFunctional< Real >::g_, ROL::KLDivergence< Real >::gval_, ROL::Vector< Real >::scale(), ROL::SampleGenerator< Real >::sumAll(), and ROL::RandVarFunctional< Real >::val_.

template<class Real >
void ROL::KLDivergence< Real >::updateHessVec ( Objective< Real > &  obj,
const Vector< Real > &  v,
const std::vector< Real > &  vstat,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
Real &  tol 
)
inlinevirtual

Update internal risk measure storage for Hessian-time-a-vector computation.

Parameters
[in]valis the value of the random variable objective function at the current sample point
[in]gis the gradient of the random variable objective function at the current sample point
[in]gvis the gradient of the random variable objective function at the current sample point applied to the vector v0
[in]hvis the Hessian of the random variable objective function at the current sample point applied to the vector v0
[in]weightis the weight associated with the current sample point

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 206 of file ROL_KLDivergence.hpp.

References ROL::RandVarFunctional< Real >::computeGradVec(), ROL::RandVarFunctional< Real >::computeHessVec(), ROL::RandVarFunctional< Real >::computeValue(), ROL::RandVarFunctional< Real >::dualVector_, ROL::KLDivergence< Real >::eps_, ROL::KLDivergence< Real >::exponential(), ROL::RandVarFunctional< Real >::g_, ROL::RandVarFunctional< Real >::gv_, ROL::KLDivergence< Real >::gval_, ROL::KLDivergence< Real >::gvval_, ROL::RandVarFunctional< Real >::hv_, ROL::KLDivergence< Real >::hval_, ROL::KLDivergence< Real >::scaledGradient_, ROL::KLDivergence< Real >::scaledHessVec_, ROL::RandVarFunctional< Real >::val_, and ROL::RandVarFunctional< Real >::weight_.

template<class Real >
void ROL::KLDivergence< Real >::getHessVec ( Vector< Real > &  hv,
std::vector< Real > &  hvstat,
const Vector< Real > &  v,
const std::vector< Real > &  vstat,
const Vector< Real > &  x,
const std::vector< Real > &  xstat,
SampleGenerator< Real > &  sampler 
)
inlinevirtual

Return risk measure Hessian-times-a-vector.

Parameters
[out]hvis the Hessian-times-a-vector of the risk measure
[in]sampleris the ROL::SampleGenerator used to sample the objective function

Upon return, getHessVec returns \(\nabla^2 \mathcal{R}(f(x_0))v_0\) (if available) where \(f(x_0)\) denotes the random variable objective function evaluated at \(x_0\).

Reimplemented from ROL::RandVarFunctional< Real >.

Definition at line 227 of file ROL_KLDivergence.hpp.

References ROL::Vector< Real >::axpy(), ROL::RandVarFunctional< Real >::dualVector_, ROL::KLDivergence< Real >::eps_, ROL::RandVarFunctional< Real >::g_, ROL::RandVarFunctional< Real >::gv_, ROL::KLDivergence< Real >::gval_, ROL::KLDivergence< Real >::gvval_, ROL::RandVarFunctional< Real >::hv_, ROL::KLDivergence< Real >::hval_, ROL::Vector< Real >::scale(), ROL::KLDivergence< Real >::scaledGradient_, ROL::KLDivergence< Real >::scaledHessVec_, ROL::SampleGenerator< Real >::sumAll(), and ROL::RandVarFunctional< Real >::val_.

template<class Real >
Real ROL::KLDivergence< Real >::exponential ( const Real  arg1,
const Real  arg2 
) const
inlineprivate
template<class Real >
Real ROL::KLDivergence< Real >::exponential ( const Real  arg) const
inlineprivate

Definition at line 280 of file ROL_KLDivergence.hpp.

template<class Real >
Real ROL::KLDivergence< Real >::power ( const Real  arg,
const Real  pow 
) const
inlineprivate

Definition at line 289 of file ROL_KLDivergence.hpp.

Referenced by ROL::KLDivergence< Real >::exponential().

Member Data Documentation

template<class Real >
Real ROL::KLDivergence< Real >::eps_
private
template<class Real >
Real ROL::KLDivergence< Real >::gval_
private
template<class Real >
Real ROL::KLDivergence< Real >::gvval_
private
template<class Real >
Real ROL::KLDivergence< Real >::hval_
private
template<class Real >
ROL::Ptr<Vector<Real> > ROL::KLDivergence< Real >::scaledGradient_
private
template<class Real >
ROL::Ptr<Vector<Real> > ROL::KLDivergence< Real >::scaledHessVec_
private
template<class Real >
bool ROL::KLDivergence< Real >::firstResetKLD_
private

Definition at line 91 of file ROL_KLDivergence.hpp.

Referenced by ROL::KLDivergence< Real >::initialize().


The documentation for this class was generated from the following file: