ROL
|
Creates a constraint from an objective function and a offset value. More...
#include <ROL_ConstraintFromObjective.hpp>
Public Member Functions | |
ConstraintFromObjective (const ROL::Ptr< Objective< Real > > &obj, const Real offset=0) | |
const ROL::Ptr< Objective< Real > > | getObjective (void) const |
void | setParameter (const std::vector< Real > ¶m) |
void | update (const V &x, bool flag=true, int iter=-1) |
Update constraint. More... | |
void | value (V &c, const V &x, Real &tol) |
Evaluate constraint c(x) = f(x)-offset. More... | |
void | applyJacobian (V &jv, const V &v, const V &x, Real &tol) |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
\[ c'(x)v = \lim_{t\rightarrow 0} \frac{d}{dt} f(x+tv) = \langle \nabla f(x),v\rangle \] . More... | |
void | applyAdjointJacobian (V &ajv, const V &v, const V &x, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^\ast \in L(\mathcal{C}^\ast, \mathcal{X}^\ast)\), to vector \(v\). More... | |
Public Member Functions inherited from ROL::Constraint< Real > | |
virtual | ~Constraint (void) |
Constraint (void) | |
virtual void | applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More... | |
virtual void | applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) |
Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More... | |
virtual std::vector< Real > | solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol) |
Approximately solves the augmented system
\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \] where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More... | |
virtual void | applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol) |
Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:
\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \] where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More... | |
void | activate (void) |
Turn on constraints. More... | |
void | deactivate (void) |
Turn off constraints. More... | |
bool | isActivated (void) |
Check if constraints are on. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the constraint Jacobian application. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS) |
Finite-difference check for the application of the adjoint of constraint Jacobian. More... | |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual Real | checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout) |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
virtual std::vector < std::vector< Real > > | checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1) |
Finite-difference check for the application of the adjoint of constraint Hessian. More... | |
Private Types | |
using | V = ROL::Vector< Real > |
Private Member Functions | |
Real | getValue (const V &x) |
void | setValue (V &x, Real val) |
Private Attributes | |
const ROL::Ptr< Objective< Real > > | obj_ |
ROL::Ptr< V > | dualVector_ |
const Real | offset_ |
bool | isDualInitialized_ |
Additional Inherited Members | |
Protected Member Functions inherited from ROL::Constraint< Real > | |
const std::vector< Real > | getParameter (void) const |
Creates a constraint from an objective function and a offset value.
Example: Suppose we have an objective function f(x) and we wish to impose, e.g., a condition f(x)-offset = 0, then this class creates the scalar constraint c(x) = f(x)-offset
Definition at line 64 of file ROL_ConstraintFromObjective.hpp.
|
private |
Definition at line 66 of file ROL_ConstraintFromObjective.hpp.
|
inline |
Definition at line 85 of file ROL_ConstraintFromObjective.hpp.
|
inlineprivate |
Definition at line 75 of file ROL_ConstraintFromObjective.hpp.
Referenced by ROL::ConstraintFromObjective< Real >::applyAdjointJacobian().
|
inlineprivate |
Definition at line 79 of file ROL_ConstraintFromObjective.hpp.
Referenced by ROL::ConstraintFromObjective< Real >::applyJacobian(), and ROL::ConstraintFromObjective< Real >::value().
|
inline |
Definition at line 88 of file ROL_ConstraintFromObjective.hpp.
References ROL::ConstraintFromObjective< Real >::obj_.
|
inlinevirtual |
Reimplemented from ROL::Constraint< Real >.
Definition at line 91 of file ROL_ConstraintFromObjective.hpp.
References ROL::ConstraintFromObjective< Real >::obj_, and ROL::Constraint< Real >::setParameter().
|
inlinevirtual |
Update constraint.
Reimplemented from ROL::Constraint< Real >.
Definition at line 99 of file ROL_ConstraintFromObjective.hpp.
References ROL::ConstraintFromObjective< Real >::obj_.
|
inlinevirtual |
Evaluate constraint c(x) = f(x)-offset.
Implements ROL::Constraint< Real >.
Definition at line 105 of file ROL_ConstraintFromObjective.hpp.
References ROL::ConstraintFromObjective< Real >::obj_, ROL::ConstraintFromObjective< Real >::offset_, and ROL::ConstraintFromObjective< Real >::setValue().
|
inlinevirtual |
Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).
\[ c'(x)v = \lim_{t\rightarrow 0} \frac{d}{dt} f(x+tv) = \langle \nabla f(x),v\rangle \]
.
Reimplemented from ROL::Constraint< Real >.
Definition at line 115 of file ROL_ConstraintFromObjective.hpp.
References ROL::Vector< Real >::clone(), ROL::Vector< Real >::dot(), ROL::Vector< Real >::dual(), ROL::ConstraintFromObjective< Real >::dualVector_, ROL::ConstraintFromObjective< Real >::isDualInitialized_, ROL::ConstraintFromObjective< Real >::obj_, and ROL::ConstraintFromObjective< Real >::setValue().
|
inlinevirtual |
Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^\ast \in L(\mathcal{C}^\ast, \mathcal{X}^\ast)\), to vector \(v\).
\[ c'(x)^\ast v = v\nabla f(x) \]
Reimplemented from ROL::Constraint< Real >.
Definition at line 130 of file ROL_ConstraintFromObjective.hpp.
References ROL::ConstraintFromObjective< Real >::getValue(), ROL::ConstraintFromObjective< Real >::obj_, and ROL::Vector< Real >::scale().
|
private |
Definition at line 70 of file ROL_ConstraintFromObjective.hpp.
Referenced by ROL::ConstraintFromObjective< Real >::applyAdjointJacobian(), ROL::ConstraintFromObjective< Real >::applyJacobian(), ROL::ConstraintFromObjective< Real >::getObjective(), ROL::ConstraintFromObjective< Real >::setParameter(), ROL::ConstraintFromObjective< Real >::update(), and ROL::ConstraintFromObjective< Real >::value().
|
private |
Definition at line 71 of file ROL_ConstraintFromObjective.hpp.
Referenced by ROL::ConstraintFromObjective< Real >::applyJacobian().
|
private |
Definition at line 72 of file ROL_ConstraintFromObjective.hpp.
Referenced by ROL::ConstraintFromObjective< Real >::value().
|
private |
Definition at line 73 of file ROL_ConstraintFromObjective.hpp.
Referenced by ROL::ConstraintFromObjective< Real >::applyJacobian().