ROL
Public Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
ROL::ConstraintFromObjective< Real > Class Template Reference

Creates a constraint from an objective function and a offset value. More...

#include <ROL_ConstraintFromObjective.hpp>

+ Inheritance diagram for ROL::ConstraintFromObjective< Real >:

Public Member Functions

 ConstraintFromObjective (const ROL::Ptr< Objective< Real > > &obj, const Real offset=0)
 
const ROL::Ptr< Objective< Real > > getObjective (void) const
 
void setParameter (const std::vector< Real > &param)
 
void update (const V &x, bool flag=true, int iter=-1)
 Update constraint. More...
 
void value (V &c, const V &x, Real &tol)
 Evaluate constraint c(x) = f(x)-offset. More...
 
void applyJacobian (V &jv, const V &v, const V &x, Real &tol)
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

\[ c'(x)v = \lim_{t\rightarrow 0} \frac{d}{dt} f(x+tv) = \langle \nabla f(x),v\rangle \]

. More...

 
void applyAdjointJacobian (V &ajv, const V &v, const V &x, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^\ast \in L(\mathcal{C}^\ast, \mathcal{X}^\ast)\), to vector \(v\). More...
 
- Public Member Functions inherited from ROL::Constraint< Real >
virtual ~Constraint (void)
 
 Constraint (void)
 
virtual void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol)
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
virtual void applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
 Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More...
 
virtual std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
 Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More...

 
virtual void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:

\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]

where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More...

 
void activate (void)
 Turn on constraints. More...
 
void deactivate (void)
 Turn off constraints. More...
 
bool isActivated (void)
 Check if constraints are on. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian. More...
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual std::vector
< std::vector< Real > > 
checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 

Private Types

using V = ROL::Vector< Real >
 

Private Member Functions

Real getValue (const V &x)
 
void setValue (V &x, Real val)
 

Private Attributes

const ROL::Ptr< Objective< Real > > obj_
 
ROL::Ptr< VdualVector_
 
const Real offset_
 
bool isDualInitialized_
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Constraint< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<class Real>
class ROL::ConstraintFromObjective< Real >

Creates a constraint from an objective function and a offset value.

Example: Suppose we have an objective function f(x) and we wish to impose, e.g., a condition f(x)-offset = 0, then this class creates the scalar constraint c(x) = f(x)-offset

Definition at line 64 of file ROL_ConstraintFromObjective.hpp.

Member Typedef Documentation

template<class Real >
using ROL::ConstraintFromObjective< Real >::V = ROL::Vector<Real>
private

Definition at line 66 of file ROL_ConstraintFromObjective.hpp.

Constructor & Destructor Documentation

template<class Real >
ROL::ConstraintFromObjective< Real >::ConstraintFromObjective ( const ROL::Ptr< Objective< Real > > &  obj,
const Real  offset = 0 
)
inline

Definition at line 85 of file ROL_ConstraintFromObjective.hpp.

Member Function Documentation

template<class Real >
Real ROL::ConstraintFromObjective< Real >::getValue ( const V x)
inlineprivate
template<class Real >
void ROL::ConstraintFromObjective< Real >::setValue ( V x,
Real  val 
)
inlineprivate
template<class Real >
const ROL::Ptr<Objective<Real> > ROL::ConstraintFromObjective< Real >::getObjective ( void  ) const
inline
template<class Real >
void ROL::ConstraintFromObjective< Real >::setParameter ( const std::vector< Real > &  param)
inlinevirtual
template<class Real >
void ROL::ConstraintFromObjective< Real >::update ( const V x,
bool  flag = true,
int  iter = -1 
)
inlinevirtual

Update constraint.

Reimplemented from ROL::Constraint< Real >.

Definition at line 99 of file ROL_ConstraintFromObjective.hpp.

References ROL::ConstraintFromObjective< Real >::obj_.

template<class Real >
void ROL::ConstraintFromObjective< Real >::value ( V c,
const V x,
Real &  tol 
)
inlinevirtual
template<class Real >
void ROL::ConstraintFromObjective< Real >::applyJacobian ( V jv,
const V v,
const V x,
Real &  tol 
)
inlinevirtual

Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

\[ c'(x)v = \lim_{t\rightarrow 0} \frac{d}{dt} f(x+tv) = \langle \nabla f(x),v\rangle \]

.

Reimplemented from ROL::Constraint< Real >.

Definition at line 115 of file ROL_ConstraintFromObjective.hpp.

References ROL::Vector< Real >::clone(), ROL::Vector< Real >::dot(), ROL::Vector< Real >::dual(), ROL::ConstraintFromObjective< Real >::dualVector_, ROL::ConstraintFromObjective< Real >::isDualInitialized_, ROL::ConstraintFromObjective< Real >::obj_, and ROL::ConstraintFromObjective< Real >::setValue().

template<class Real >
void ROL::ConstraintFromObjective< Real >::applyAdjointJacobian ( V ajv,
const V v,
const V x,
Real &  tol 
)
inlinevirtual

Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^\ast \in L(\mathcal{C}^\ast, \mathcal{X}^\ast)\), to vector \(v\).

\[ c'(x)^\ast v = v\nabla f(x) \]

Reimplemented from ROL::Constraint< Real >.

Definition at line 130 of file ROL_ConstraintFromObjective.hpp.

References ROL::ConstraintFromObjective< Real >::getValue(), ROL::ConstraintFromObjective< Real >::obj_, and ROL::Vector< Real >::scale().

Member Data Documentation

template<class Real >
const ROL::Ptr<Objective<Real> > ROL::ConstraintFromObjective< Real >::obj_
private
template<class Real >
ROL::Ptr<V> ROL::ConstraintFromObjective< Real >::dualVector_
private
template<class Real >
const Real ROL::ConstraintFromObjective< Real >::offset_
private
template<class Real >
bool ROL::ConstraintFromObjective< Real >::isDualInitialized_
private

The documentation for this class was generated from the following file: