ROL
ROL_lBFGS.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_LBFGS_H
45 #define ROL_LBFGS_H
46 
51 #include "ROL_Secant.hpp"
52 
53 namespace ROL {
54 
55 template<class Real>
56 class lBFGS : public Secant<Real> {
57 public:
58  lBFGS(int M) : Secant<Real>(M) {}
59 
60  // Apply lBFGS Approximate Inverse Hessian
61  void applyH( Vector<Real> &Hv, const Vector<Real> &v ) const {
62  // Get Generic Secant State
63  const ROL::Ptr<SecantState<Real> >& state = Secant<Real>::get_state();
64  Real zero(0);
65 
66  Hv.set(v.dual());
67  std::vector<Real> alpha(state->current+1,zero);
68  for (int i = state->current; i>=0; i--) {
69  alpha[i] = state->iterDiff[i]->dot(Hv);
70  alpha[i] /= state->product[i];
71  Hv.axpy(-alpha[i],(state->gradDiff[i])->dual());
72  }
73 
74  // Apply initial inverse Hessian approximation to v
75  ROL::Ptr<Vector<Real> > tmp = Hv.clone();
76  Secant<Real>::applyH0(*tmp,Hv.dual());
77  Hv.set(*tmp);
78 
79  Real beta(0);
80  for (int i = 0; i <= state->current; i++) {
81  beta = Hv.dot((state->gradDiff[i])->dual());
82  beta /= state->product[i];
83  Hv.axpy((alpha[i]-beta),*(state->iterDiff[i]));
84  }
85  }
86 
87  // Apply lBFGS Approximate Hessian
88  void applyB( Vector<Real> &Bv, const Vector<Real> &v ) const {
89  // Get Generic Secant State
90  const ROL::Ptr<SecantState<Real> >& state = Secant<Real>::get_state();
91  Real one(1);
92 
93  // Apply initial Hessian approximation to v
95 
96  std::vector<ROL::Ptr<Vector<Real> > > a(state->current+1);
97  std::vector<ROL::Ptr<Vector<Real> > > b(state->current+1);
98  Real bv(0), av(0), bs(0), as(0);
99  for (int i = 0; i <= state->current; i++) {
100  b[i] = Bv.clone();
101  b[i]->set(*(state->gradDiff[i]));
102  b[i]->scale(one/sqrt(state->product[i]));
103  bv = v.dot(b[i]->dual());
104  Bv.axpy(bv,*b[i]);
105 
106  a[i] = Bv.clone();
107  Secant<Real>::applyB0(*a[i],*(state->iterDiff[i]));
108 
109  for (int j = 0; j < i; j++) {
110  bs = (state->iterDiff[i])->dot(b[j]->dual());
111  a[i]->axpy(bs,*b[j]);
112  as = (state->iterDiff[i])->dot(a[j]->dual());
113  a[i]->axpy(-as,*a[j]);
114  }
115  as = (state->iterDiff[i])->dot(a[i]->dual());
116  a[i]->scale(one/sqrt(as));
117  av = v.dot(a[i]->dual());
118  Bv.axpy(-av,*a[i]);
119  }
120  }
121 };
122 
123 }
124 
125 #endif
void applyB(Vector< Real > &Bv, const Vector< Real > &v) const
Definition: ROL_lBFGS.hpp:88
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis...
Definition: ROL_Vector.hpp:226
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:153
lBFGS(int M)
Definition: ROL_lBFGS.hpp:58
void applyH(Vector< Real > &Hv, const Vector< Real > &v) const
Definition: ROL_lBFGS.hpp:61
Provides definitions for limited-memory BFGS operators.
Definition: ROL_lBFGS.hpp:56
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
virtual Real dot(const Vector &x) const =0
Compute where .
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
ROL::Ptr< SecantState< Real > > & get_state()
Definition: ROL_Secant.hpp:88
virtual void applyB0(Vector< Real > &Bv, const Vector< Real > &v) const
Definition: ROL_Secant.hpp:140
Provides interface for and implements limited-memory secant operators.
Definition: ROL_Secant.hpp:70
virtual void applyH0(Vector< Real > &Hv, const Vector< Real > &v) const
Definition: ROL_Secant.hpp:128
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:209