ROL
ROL_ScalarLinearConstraint.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_AFFINE_HYPERPLANE_EQUALITY_CONSTRAINT_H
45 #define ROL_AFFINE_HYPERPLANE_EQUALITY_CONSTRAINT_H
46 
47 #include "ROL_Vector.hpp"
48 #include "ROL_SingletonVector.hpp"
49 #include "ROL_Constraint.hpp"
50 
51 #include <vector>
78 namespace ROL {
79 
80 template <class Real>
81 class ScalarLinearConstraint : public Constraint<Real> {
82 private:
83  const Ptr<Vector<Real>> a_;
84  const Real b_;
85 
86 public:
88  const Real b)
89  : a_(a), b_(b) {}
90 
91  void value(Vector<Real> &c, const Vector<Real> &x, Real &tol) {
92  SingletonVector<Real> &cc = dynamic_cast<SingletonVector<Real>&>(c);
93  cc.setValue(a_->dot(x.dual()) - b_);
94  }
95 
97  const Vector<Real> &x, Real &tol) {
98  SingletonVector<Real> &jc = dynamic_cast<SingletonVector<Real>&>(jv);
99  jc.setValue(a_->dot(v.dual()));
100  }
101 
103  const Vector<Real> &x, Real &tol) {
104  const SingletonVector<Real>& vc = dynamic_cast<const SingletonVector<Real>&>(v);
105  ajv.set(*a_);
106  ajv.scale(vc.getValue());
107  }
108 
110  const Vector<Real> &v, const Vector<Real> &x,
111  Real &tol) {
112  ahuv.zero();
113  }
114 
115  std::vector<Real> solveAugmentedSystem(Vector<Real> &v1, Vector<Real> &v2,
116  const Vector<Real> &b1, const Vector<Real> &b2,
117  const Vector<Real> &x, Real &tol) {
118  SingletonVector<Real>& v2c = dynamic_cast<SingletonVector<Real>&>(v2);
119  const SingletonVector<Real>& b2c = dynamic_cast<const SingletonVector<Real>&>(b2);
120 
121  v2c.setValue( (a_->dot(b1.dual()) - b2c.getValue() )/a_->dot(*a_) );
122  v1.set(b1.dual());
123  v1.axpy(-v2c.getValue(),a_->dual());
124 
125  std::vector<Real> out;
126  return out;
127  }
128 
129 }; // class ScalarLinearConstraint
130 
131 } // namespace ROL
132 
133 #endif
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis...
Definition: ROL_Vector.hpp:226
virtual void scale(const Real alpha)=0
Compute where .
void value(Vector< Real > &c, const Vector< Real > &x, Real &tol)
Evaluate the constraint operator at .
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:153
const Ptr< Vector< Real > > a_
Dual vector defining hyperplane.
void applyJacobian(Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply the constraint Jacobian at , , to vector .
virtual void zero()
Set to zero vector.
Definition: ROL_Vector.hpp:167
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
This equality constraint defines an affine hyperplane.
void applyAdjointJacobian(Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply the adjoint of the the constraint Jacobian at , , to vector .
void setValue(const Real &v)
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:209
std::vector< Real > solveAugmentedSystem(Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
Approximately solves the augmented system where , , , , is an identity or Riesz operator...
ScalarLinearConstraint(const Ptr< Vector< Real >> &a, const Real b)
Defines the general constraint operator interface.
void applyAdjointHessian(Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply the derivative of the adjoint of the constraint Jacobian at to vector in direction ...