ROL
ROL_RiskMeasure.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_RISKMEASURE_HPP
45 #define ROL_RISKMEASURE_HPP
46 
47 #include "ROL_RiskVector.hpp"
48 
93 namespace ROL {
94 
95 template<class Real>
96 class RiskMeasure {
97 protected:
98  Real val_;
99  Real gv_;
100  ROL::Ptr<Vector<Real> > g_;
101  ROL::Ptr<Vector<Real> > hv_;
102  ROL::Ptr<Vector<Real> > dualVector_;
104 
105  int comp_;
106  int index_;
107 
108 public:
109  virtual ~RiskMeasure() {}
110 
111  RiskMeasure(void) : val_(0), gv_(0), firstReset_(true),
112  comp_(0), index_(0) {}
113 
114  void setRiskVectorInfo(const int comp, const int index) {
115  comp_ = comp;
116  index_ = index;
117  }
118 
119  int getComponent(void) const {
120  return comp_;
121  }
122 
123  int getIndex(void) const {
124  return index_;
125  }
126 
136  virtual void reset(ROL::Ptr<Vector<Real> > &x0, const Vector<Real> &x) {
137  x0 = ROL::constPtrCast<Vector<Real> >(
138  dynamic_cast<const RiskVector<Real>&>(x).getVector());
139  // Create memory for class members
140  if ( firstReset_ ) {
141  g_ = (x0->dual()).clone();
142  hv_ = (x0->dual()).clone();
143  dualVector_ = (x0->dual()).clone();
144  firstReset_ = false;
145  }
146  // Zero member variables
147  const Real zero(0);
148  val_ = zero; gv_ = zero;
149  g_->zero(); hv_->zero(); dualVector_->zero();
150  }
151 
165  virtual void reset(ROL::Ptr<Vector<Real> > &x0, const Vector<Real> &x,
166  ROL::Ptr<Vector<Real> > &v0, const Vector<Real> &v) {
167  reset(x0,x);
168  // Get vector component of v. This is important for CVaR.
169  v0 = ROL::constPtrCast<Vector<Real> >(
170  dynamic_cast<const RiskVector<Real>&>(v).getVector());
171  }
172 
180  virtual void update(const Real val, const Real weight) {
181  val_ += weight * val;
182  }
183 
193  virtual void update(const Real val, const Vector<Real> &g, const Real weight) {
194  g_->axpy(weight,g);
195  }
196 
212  virtual void update(const Real val, const Vector<Real> &g, const Real gv, const Vector<Real> &hv,
213  const Real weight) {
214  hv_->axpy(weight,hv);
215  }
216 
225  virtual Real getValue(SampleGenerator<Real> &sampler) {
226  Real val(0);
227  sampler.sumAll(&val_,&val,1);
228  return val;
229  }
230 
242  virtual void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
243  sampler.sumAll(*g_,*dualVector_);
244  (dynamic_cast<RiskVector<Real>&>(g)).setVector(*dualVector_);
245  }
246 
258  virtual void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
259  sampler.sumAll(*hv_,*dualVector_);
260  (dynamic_cast<RiskVector<Real>&>(hv)).setVector(*dualVector_);
261  }
262 };
263 
264 }
265 
266 #endif
virtual void getHessVec(Vector< Real > &hv, SampleGenerator< Real > &sampler)
Return risk measure Hessian-times-a-vector.
virtual Real getValue(SampleGenerator< Real > &sampler)
Return risk measure value.
ROL::Ptr< Vector< Real > > hv_
virtual void getGradient(Vector< Real > &g, SampleGenerator< Real > &sampler)
Return risk measure (sub)gradient.
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
void sumAll(Real *input, Real *output, int dim) const
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
int getComponent(void) const
ROL::Ptr< Vector< Real > > dualVector_
virtual void reset(ROL::Ptr< Vector< Real > > &x0, const Vector< Real > &x)
Reset internal risk measure storage. Called for value and gradient computation.
ROL::Ptr< Vector< Real > > g_
void setRiskVectorInfo(const int comp, const int index)
virtual void update(const Real val, const Vector< Real > &g, const Real gv, const Vector< Real > &hv, const Real weight)
Update internal risk measure storage for Hessian-time-a-vector computation.
virtual void reset(ROL::Ptr< Vector< Real > > &x0, const Vector< Real > &x, ROL::Ptr< Vector< Real > > &v0, const Vector< Real > &v)
Reset internal risk measure storage. Called for Hessian-times-a-vector computation.
int getIndex(void) const
virtual void update(const Real val, const Real weight)
Update internal risk measure storage for value computation.
virtual void update(const Real val, const Vector< Real > &g, const Real weight)
Update internal risk measure storage for gradient computation.
Provides the interface to implement risk measures.