ROL
ROL_PoissonControl.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
49 #ifndef USE_HESSVEC
50 #define USE_HESSVEC 1
51 #endif
52 
53 #ifndef ROL_POISSONCONTROL_HPP
54 #define ROL_POISSONCONTROL_HPP
55 
56 #include "ROL_StdVector.hpp"
57 #include "ROL_TestProblem.hpp"
58 
59 namespace ROL {
60 namespace ZOO {
61 
64 template<class Real>
65 class Objective_PoissonControl : public Objective<Real> {
66 
67 typedef std::vector<Real> vector;
68 typedef Vector<Real> V;
70 
71 typedef typename vector::size_type uint;
72 
73 private:
74  Real alpha_;
75 
76  ROL::Ptr<const vector> getVector( const V& x ) {
77 
78  return dynamic_cast<const SV&>(x).getVector();
79  }
80 
81  ROL::Ptr<vector> getVector( V& x ) {
82 
83  return dynamic_cast<SV&>(x).getVector();
84  }
85 
86 public:
87 
88  Objective_PoissonControl(Real alpha = 1.e-4) : alpha_(alpha) {}
89 
90  void apply_mass(Vector<Real> &Mz, const Vector<Real> &z ) {
91 
92 
93  ROL::Ptr<const vector> zp = getVector(z);
94  ROL::Ptr<vector> Mzp = getVector(Mz);
95 
96  uint n = zp->size();
97  Real h = 1.0/((Real)n+1.0);
98  for (uint i=0; i<n; i++) {
99  if ( i == 0 ) {
100  (*Mzp)[i] = h/6.0*(4.0*(*zp)[i] + (*zp)[i+1]);
101  }
102  else if ( i == n-1 ) {
103  (*Mzp)[i] = h/6.0*((*zp)[i-1] + 4.0*(*zp)[i]);
104  }
105  else {
106  (*Mzp)[i] = h/6.0*((*zp)[i-1] + 4.0*(*zp)[i] + (*zp)[i+1]);
107  }
108  }
109  }
110 
111  void solve_poisson(Vector<Real> & u, const Vector<Real> & z) {
112 
113 
114 
115 
116  ROL::Ptr<vector> up = getVector(u);
117 
118  uint n = up->size();
119  Real h = 1.0/((Real)n+1.0);
120  SV b( ROL::makePtr<vector>(n,0.0) );
121  ROL::Ptr<vector> bp = getVector(b);
122  apply_mass(b,z);
123 
124  Real d = 2.0/h;
125  Real o = -1.0/h;
126  Real m = 0.0;
127  vector c(n,o);
128  c[0] = c[0]/d;
129  (*up)[0] = (*bp)[0]/d;
130  for ( uint i = 1; i < n; i++ ) {
131  m = 1.0/(d - o*c[i-1]);
132  c[i] = c[i]*m;
133  (*up)[i] = ( (*bp)[i] - o*(*up)[i-1] )*m;
134  }
135  for ( uint i = n-1; i > 0; i-- ) {
136  (*up)[i-1] = (*up)[i-1] - c[i-1]*(*up)[i];
137  }
138  }
139 
140  Real evaluate_target(Real x) {
141  Real val = 1.0/3.0*std::pow(x,4.0) - 2.0/3.0*std::pow(x,3.0) + 1.0/3.0*x + 8.0*alpha_;
142  return val;
143  }
144 
145  Real value( const Vector<Real> &z, Real &tol ) {
146 
147 
148 
149  ROL::Ptr<const vector> zp = getVector(z);
150  uint n = zp->size();
151  Real h = 1.0/((Real)n+1.0);
152  // SOLVE STATE EQUATION
153  SV u( ROL::makePtr<vector>(n,0.0) );
154  solve_poisson(u,z);
155  ROL::Ptr<vector> up = getVector(u);
156 
157  Real val = 0.0;
158  Real res = 0.0;
159  Real res1 = 0.0;
160  Real res2 = 0.0;
161  Real res3 = 0.0;
162  for (uint i=0; i<n; i++) {
163  res = alpha_*(*zp)[i];
164  if ( i == 0 ) {
165  res *= h/6.0*(4.0*(*zp)[i] + (*zp)[i+1]);
166  res1 = (*up)[i]-evaluate_target((Real)(i+1)*h);
167  res2 = (*up)[i+1]-evaluate_target((Real)(i+2)*h);
168  res += h/6.0*(4.0*res1 + res2)*res1;
169  }
170  else if ( i == n-1 ) {
171  res *= h/6.0*((*zp)[i-1] + 4.0*(*zp)[i]);
172  res1 = (*up)[i-1]-evaluate_target((Real)(i)*h);
173  res2 = (*up)[i]-evaluate_target((Real)(i+1)*h);
174  res += h/6.0*(res1 + 4.0*res2)*res2;
175  }
176  else {
177  res *= h/6.0*((*zp)[i-1] + 4.0*(*zp)[i] + (*zp)[i+1]);
178  res1 = (*up)[i-1]-evaluate_target((Real)(i)*h);
179  res2 = (*up)[i]-evaluate_target((Real)(i+1)*h);
180  res3 = (*up)[i+1]-evaluate_target((Real)(i+2)*h);
181  res += h/6.0*(res1 + 4.0*res2 + res3)*res2;
182  }
183  val += 0.5*res;
184  }
185  return val;
186  }
187 
188  void gradient( Vector<Real> &g, const Vector<Real> &z, Real &tol ) {
189 
190 
191 
192  ROL::Ptr<const vector> zp = getVector(z);
193  ROL::Ptr<vector> gp = getVector(g);
194 
195  uint n = zp->size();
196  Real h = 1.0/((Real)n+1.0);
197 
198  // SOLVE STATE EQUATION
199  SV u( ROL::makePtr<vector>(n,0.0) );
200  solve_poisson(u,z);
201  ROL::Ptr<vector> up = getVector(u);
202 
203  // SOLVE ADJOINT EQUATION
204  StdVector<Real> res( ROL::makePtr<std::vector<Real>>(n,0.0) );
205  ROL::Ptr<vector> rp = getVector(res);
206 
207  for (uint i=0; i<n; i++) {
208  (*rp)[i] = -((*up)[i]-evaluate_target((Real)(i+1)*h));
209  }
210 
211  SV p( ROL::makePtr<vector>(n,0.0) );
212  solve_poisson(p,res);
213  ROL::Ptr<vector> pp = getVector(p);
214 
215  Real res1 = 0.0;
216  Real res2 = 0.0;
217  Real res3 = 0.0;
218  for (uint i=0; i<n; i++) {
219  if ( i == 0 ) {
220  res1 = alpha_*(*zp)[i] - (*pp)[i];
221  res2 = alpha_*(*zp)[i+1] - (*pp)[i+1];
222  (*gp)[i] = h/6.0*(4.0*res1 + res2);
223  }
224  else if ( i == n-1 ) {
225  res1 = alpha_*(*zp)[i-1] - (*pp)[i-1];
226  res2 = alpha_*(*zp)[i] - (*pp)[i];
227  (*gp)[i] = h/6.0*(res1 + 4.0*res2);
228  }
229  else {
230  res1 = alpha_*(*zp)[i-1] - (*pp)[i-1];
231  res2 = alpha_*(*zp)[i] - (*pp)[i];
232  res3 = alpha_*(*zp)[i+1] - (*pp)[i+1];
233  (*gp)[i] = h/6.0*(res1 + 4.0*res2 + res3);
234  }
235  }
236  }
237 #if USE_HESSVEC
238  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &z, Real &tol ) {
239 
240 
241 
242  ROL::Ptr<const vector> zp = getVector(z);
243  ROL::Ptr<const vector> vp = getVector(v);
244  ROL::Ptr<vector> hvp = getVector(hv);
245 
246  uint n = zp->size();
247  Real h = 1.0/((Real)n+1.0);
248 
249  // SOLVE STATE EQUATION
250  SV u( ROL::makePtr<vector>(n,0.0) );
251  solve_poisson(u,v);
252  ROL::Ptr<vector> up = getVector(u);
253 
254  // SOLVE ADJOINT EQUATION
255  SV p( ROL::makePtr<vector>(n,0.0) );
256 
257  solve_poisson(p,u);
258  ROL::Ptr<vector> pp = getVector(p);
259 
260  Real res1 = 0.0;
261  Real res2 = 0.0;
262  Real res3 = 0.0;
263  for (uint i=0; i<n; i++) {
264  if ( i == 0 ) {
265  res1 = alpha_*(*vp)[i] + (*pp)[i];
266  res2 = alpha_*(*vp)[i+1] + (*pp)[i+1];
267  (*hvp)[i] = h/6.0*(4.0*res1 + res2);
268  }
269  else if ( i == n-1 ) {
270  res1 = alpha_*(*vp)[i-1] + (*pp)[i-1];
271  res2 = alpha_*(*vp)[i] + (*pp)[i];
272  (*hvp)[i] = h/6.0*(res1 + 4.0*res2);
273  }
274  else {
275  res1 = alpha_*(*vp)[i-1] + (*pp)[i-1];
276  res2 = alpha_*(*vp)[i] + (*pp)[i];
277  res3 = alpha_*(*vp)[i+1] + (*pp)[i+1];
278  (*hvp)[i] = h/6.0*(res1 + 4.0*res2 + res3);
279  }
280  }
281  }
282 #endif
283 };
284 
285 template<class Real>
286 class getPoissonControl : public TestProblem<Real> {
287 public:
289 
290  Ptr<Objective<Real>> getObjective(void) const {
291  // Instantiate Objective Function
292  return ROL::makePtr<Objective_PoissonControl<Real>>();
293  }
294 
295  Ptr<Vector<Real>> getInitialGuess(void) const {
296  // Problem dimension
297  int n = 512;
298  // Get Initial Guess
299  ROL::Ptr<std::vector<Real> > x0p = ROL::makePtr<std::vector<Real>>(n,0.0);
300  for (int i=0; i<n; i++) {
301  (*x0p)[i] = 0.0;
302  }
303  return ROL::makePtr<StdVector<Real>>(x0p);
304  }
305 
306  Ptr<Vector<Real>> getSolution(const int i = 0) const {
307  // Problem dimension
308  int n = 512;
309  // Get Solution
310  ROL::Ptr<std::vector<Real> > xp = ROL::makePtr<std::vector<Real>>(n,0.0);
311  Real h = 1.0/((Real)n+1.0), pt = 0.0;
312  for( int i = 0; i < n; i++ ) {
313  pt = (Real)(i+1)*h;
314  (*xp)[i] = 4.0*pt*(1.0-pt);
315  }
316  return ROL::makePtr<StdVector<Real>>(xp);
317  }
318 };
319 
320 } // End ZOO Namespace
321 } // End ROL Namespace
322 
323 #endif
Provides the interface to evaluate objective functions.
typename PV< Real >::size_type size_type
Ptr< Vector< Real > > getSolution(const int i=0) const
Real value(const Vector< Real > &z, Real &tol)
Compute value.
virtual void hessVec(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Apply Hessian approximation to vector.
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
Ptr< Objective< Real > > getObjective(void) const
void solve_poisson(Vector< Real > &u, const Vector< Real > &z)
void gradient(Vector< Real > &g, const Vector< Real > &z, Real &tol)
Compute gradient.
Poisson distributed control.
Contains definitions of test objective functions.
void apply_mass(Vector< Real > &Mz, const Vector< Real > &z)
ROL::Ptr< const vector > getVector(const V &x)
Ptr< Vector< Real > > getInitialGuess(void) const