ROL
ROL_MeanVarianceQuadrangle.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_MEANVARIANCEQUAD_HPP
45 #define ROL_MEANVARIANCEQUAD_HPP
46 
47 #include "ROL_ExpectationQuad.hpp"
48 
75 namespace ROL {
76 
77 template<class Real>
79 private:
80  Real coeff_;
81 
82  void parseParameterList(ROL::ParameterList &parlist) {
83  std::string type = parlist.sublist("SOL").get("Stochastic Component Type","Risk Averse");
84  ROL::ParameterList list;
85  if (type == "Risk Averse") {
86  list = parlist.sublist("SOL").sublist("Risk Measure").sublist("Safety Margin");
87  }
88  else if (type == "Regret") {
89  list = parlist.sublist("SOL").sublist("Regret Measure").sublist("Mean L2");
90  }
91  else if (type == "Error" || type == "Deviation") {
92  coeff_ = static_cast<Real>(1);
93  return;
94  }
95  coeff_ = list.get<Real>("Coefficient");
96  }
97 
98  void checkInputs(void) const {
99  Real zero(0);
100  ROL_TEST_FOR_EXCEPTION((coeff_ <= zero), std::invalid_argument,
101  ">>> ERROR (ROL::MeanVarianceQuadrangle): Coefficient must be positive!");
102  }
103 
104 public:
109  MeanVarianceQuadrangle(const Real coeff = 1)
110  : ExpectationQuad<Real>(), coeff_(coeff) {
111  checkInputs();
112  }
113 
122  MeanVarianceQuadrangle(ROL::ParameterList &parlist)
123  : ExpectationQuad<Real>() {
124  parseParameterList(parlist);
125  checkInputs();
126  }
127 
128  Real error(Real x, int deriv = 0) {
129  Real err(0), two(2);
130  if (deriv==0) {
131  err = coeff_*x*x;
132  }
133  else if (deriv==1) {
134  err = two*coeff_*x;
135  }
136  else {
137  err = two*coeff_;
138  }
139  return err;
140  }
141 
142  Real regret(Real x, int deriv = 0) {
143  Real zero(0), one(1);
144  Real X = ((deriv==0) ? x : ((deriv==1) ? one : zero));
145  Real reg = error(x,deriv) + X;
146  return reg;
147  }
148 
149 };
150 
151 }
152 #endif
Real regret(Real x, int deriv=0)
Evaluate the scalar regret function at x.
Provides a general interface for risk and error measures generated through the expectation risk quadr...
MeanVarianceQuadrangle(ROL::ParameterList &parlist)
Constructor.
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
MeanVarianceQuadrangle(const Real coeff=1)
Constructor.
Provides an interface for the mean plus variance risk measure using the expectation risk quadrangle...
void parseParameterList(ROL::ParameterList &parlist)
Real error(Real x, int deriv=0)
Evaluate the scalar error function at x.