ROL
ROL_MeanVarianceFromTarget.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_MEANVARIANCEFROMTARGET_HPP
45 #define ROL_MEANVARIANCEFROMTARGET_HPP
46 
48 #include "ROL_PositiveFunction.hpp"
49 #include "ROL_PlusFunction.hpp"
50 #include "ROL_AbsoluteValue.hpp"
51 
52 #include "ROL_ParameterList.hpp"
53 
74 namespace ROL {
75 
76 template<class Real>
79 private:
80  ROL::Ptr<PositiveFunction<Real> > positiveFunction_;
81  std::vector<Real> target_;
82  std::vector<Real> order_;
83  std::vector<Real> coeff_;
85 
91 
94 
99 
100  void checkInputs(void) const {
101  int oSize = order_.size(), cSize = coeff_.size();
102  ROL_TEST_FOR_EXCEPTION((oSize!=cSize),std::invalid_argument,
103  ">>> ERROR (ROL::MeanVarianceFromTarget): Order and coefficient arrays have different sizes!");
104  Real zero(0), two(2);
105  for (int i = 0; i < oSize; i++) {
106  ROL_TEST_FOR_EXCEPTION((order_[i] < two), std::invalid_argument,
107  ">>> ERROR (ROL::MeanVarianceFromTarget): Element of order array out of range!");
108  ROL_TEST_FOR_EXCEPTION((coeff_[i] < zero), std::invalid_argument,
109  ">>> ERROR (ROL::MeanVarianceFromTarget): Element of coefficient array out of range!");
110  }
111  ROL_TEST_FOR_EXCEPTION(positiveFunction_ == ROL::nullPtr, std::invalid_argument,
112  ">>> ERROR (ROL::MeanVarianceFromTarget): PositiveFunction pointer is null!");
113  }
114 
115 public:
126  MeanVarianceFromTarget( const Real target, const Real order, const Real coeff,
127  const ROL::Ptr<PositiveFunction<Real> > &pf )
128  : RandVarFunctional<Real>(), positiveFunction_(pf) {
129  target_.clear(); target_.push_back(target);
130  order_.clear(); order_.push_back(order);
131  coeff_.clear(); coeff_.push_back(coeff);
132  checkInputs();
133  NumMoments_ = order_.size();
134  }
135 
146  MeanVarianceFromTarget( const std::vector<Real> &target,
147  const std::vector<Real> &order,
148  const std::vector<Real> &coeff,
149  const ROL::Ptr<PositiveFunction<Real> > &pf )
150  : RandVarFunctional<Real>(), positiveFunction_(pf) {
151  target_.clear(); order_.clear(); coeff_.clear();
152  for ( uint i = 0; i < target.size(); i++ ) {
153  target_.push_back(target[i]);
154  }
155  for ( uint i = 0; i < order.size(); i++ ) {
156  order_.push_back(order[i]);
157  }
158  for ( uint i = 0; i < coeff.size(); i++ ) {
159  coeff_.push_back(coeff[i]);
160  }
161  checkInputs();
162  NumMoments_ = order_.size();
163  }
164 
177  MeanVarianceFromTarget( ROL::ParameterList &parlist )
178  : RandVarFunctional<Real>() {
179  ROL::ParameterList &list
180  = parlist.sublist("SOL").sublist("Risk Measure").sublist("Mean Plus Variance From Target");
181  // Get data from parameter list
182  target_ = ROL::getArrayFromStringParameter<double>(list,"Targets");
183  order_ = ROL::getArrayFromStringParameter<double>(list,"Orders");
184  coeff_ = ROL::getArrayFromStringParameter<double>(list,"Coefficients");
185 
186  // Build (approximate) positive function
187  std::string type = list.get<std::string>("Deviation Type");
188  if ( type == "Upper" ) {
189  positiveFunction_ = ROL::makePtr<PlusFunction<Real>>(list);
190  }
191  else if ( type == "Absolute" ) {
192  positiveFunction_ = ROL::makePtr<AbsoluteValue<Real>>(list);
193  }
194  else {
195  ROL_TEST_FOR_EXCEPTION(true, std::invalid_argument,
196  ">>> (ROL::MeanDeviation): Deviation type is not recoginized!");
197  }
198  // Check inputs
199  checkInputs();
200  NumMoments_ = order_.size();
201  }
202 
204  const Vector<Real> &x,
205  const std::vector<Real> &xstat,
206  Real &tol) {
207  Real diff(0), pf0(0);
208  Real val = computeValue(obj,x,tol);
209  val_ += weight_ * val;
210  for ( uint p = 0; p < NumMoments_; p++ ) {
211  diff = val-target_[p];
212  pf0 = positiveFunction_->evaluate(diff,0);
213  val_ += weight_ * coeff_[p] * std::pow(pf0,order_[p]);
214  }
215  }
216 
218  const Vector<Real> &x,
219  const std::vector<Real> &xstat,
220  Real &tol) {
221  Real diff(0), pf0(0), pf1(0), c(1), one(1);
222  Real val = computeValue(obj,x,tol);
223  for ( uint p = 0; p < NumMoments_; p++ ) {
224  diff = val-target_[p];
225  pf0 = positiveFunction_->evaluate(diff,0);
226  pf1 = positiveFunction_->evaluate(diff,1);
227  c += order_[p]*coeff_[p]*std::pow(pf0,order_[p]-one)*pf1;
228  }
229  computeGradient(*dualVector_,obj,x,tol);
230  g_->axpy(weight_ * c,*dualVector_);
231  }
232 
234  const Vector<Real> &v,
235  const std::vector<Real> &vstat,
236  const Vector<Real> &x,
237  const std::vector<Real> &xstat,
238  Real &tol) {
239  Real diff(0), pf0(0), pf1(0), pf2(0), p1(0), p2(0), ch(1), cg(0), one(1), two(2);
240  Real val = computeValue(obj,x,tol);
241  Real gv = computeGradVec(*dualVector_,obj,v,x,tol);
242  for ( uint p = 0; p < NumMoments_; p++ ) {
243  diff = val - target_[p];
244  pf0 = positiveFunction_->evaluate(diff,0);
245  pf1 = positiveFunction_->evaluate(diff,1);
246  pf2 = positiveFunction_->evaluate(diff,2);
247  //p0 = std::pow(pf0,order_[p]);
248  p1 = std::pow(pf0,order_[p]-one);
249  p2 = std::pow(pf0,order_[p]-two);
250  cg += order_[p]*coeff_[p]*gv*( (order_[p]-one)*p2*pf1*pf1 + p1*pf2 );
251  ch += order_[p]*coeff_[p]*p1*pf1;
252  }
253  hv_->axpy(weight_*cg,*dualVector_);
254  computeHessVec(*dualVector_,obj,v,x,tol);
255  hv_->axpy(weight_*ch,*dualVector_);
256  }
257 };
258 
259 }
260 
261 #endif
Provides the interface to evaluate objective functions.
MeanVarianceFromTarget(const std::vector< Real > &target, const std::vector< Real > &order, const std::vector< Real > &coeff, const ROL::Ptr< PositiveFunction< Real > > &pf)
Constructor.
void computeHessVec(Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
typename PV< Real >::size_type size_type
void updateHessVec(Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for Hessian-time-a-vector computation.
Ptr< Vector< Real > > g_
Real computeValue(Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > hv_
Ptr< Vector< Real > > dualVector_
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
void updateValue(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal storage for value computation.
MeanVarianceFromTarget(ROL::ParameterList &parlist)
Constructor.
void updateGradient(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for gradient computation.
MeanVarianceFromTarget(const Real target, const Real order, const Real coeff, const ROL::Ptr< PositiveFunction< Real > > &pf)
Constructor.
void computeGradient(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Provides an interface for the mean plus a sum of arbitrary order variances from targets.
Real computeGradVec(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Provides the interface to implement any functional that maps a random variable to a (extended) real n...
std::vector< Real >::size_type uint
ROL::Ptr< PositiveFunction< Real > > positiveFunction_