ROL
ROL_MeanSemiDeviationFromTarget.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_MEANSEMIDEVIATIONFROMTARGET_HPP
45 #define ROL_MEANSEMIDEVIATIONFROMTARGET_HPP
46 
48 #include "ROL_PlusFunction.hpp"
49 
69 namespace ROL {
70 
71 template<class Real>
73 private:
74  Ptr<PlusFunction<Real> > plusFunction_;
75  Real coeff_, target_;
76 
82 
85 
90 
91  void checkInputs(void) const {
92  const Real zero(0);
93  ROL_TEST_FOR_EXCEPTION((coeff_ < zero), std::invalid_argument,
94  ">>> ERROR (ROL::MeanPlusSemiDeviationFromTarget): Coefficient must be positive!");
95  ROL_TEST_FOR_EXCEPTION(plusFunction_ == nullPtr, std::invalid_argument,
96  ">>> ERROR (ROL::MeanSemiDeviation): PlusFunction pointer is null!");
97  }
98 
99 public:
100 
107  MeanSemiDeviationFromTarget( const Real coeff, const Real target,
108  const Ptr<PlusFunction<Real>> &pf )
109  : RandVarFunctional<Real>(), plusFunction_(pf), coeff_(coeff), target_(target) {
110  checkInputs();
111  }
112 
123  MeanSemiDeviationFromTarget( ROL::ParameterList &parlist )
124  : RandVarFunctional<Real>() {
125  ROL::ParameterList &list
126  = parlist.sublist("SOL").sublist("Risk Measure").sublist("Mean Plus Semi-Deviation From Target");
127  // Check inputs
128  coeff_ = list.get<Real>("Coefficient");
129  target_ = list.get<Real>("Target");
130  // Build (approximate) plus function
131  plusFunction_ = makePtr<PlusFunction<Real>>(list);
132  // Check Inputs
133  checkInputs();
134  }
135 
137  const Vector<Real> &x,
138  const std::vector<Real> &xstat,
139  Real &tol) {
140  Real val = computeValue(obj,x,tol);
141  Real pf = plusFunction_->evaluate(val-target_,0);
142  val_ += weight_ * (val + coeff_ * pf);
143  }
144 
145  Real getValue(const Vector<Real> &x,
146  const std::vector<Real> &xstat,
147  SampleGenerator<Real> &sampler) {
148  Real ev(0);
149  sampler.sumAll(&val_,&ev,1);
150  return ev;
151  }
152 
154  const Vector<Real> &x,
155  const std::vector<Real> &xstat,
156  Real &tol) {
157  const Real one(1);
158  Real val = computeValue(obj,x,tol);
159  Real pf = plusFunction_->evaluate(val-target_,1);
160  computeGradient(*dualVector_,obj,x,tol);
161  g_->axpy(weight_ * (one + coeff_ * pf), *dualVector_);
162  }
163 
165  std::vector<Real> &gstat,
166  const Vector<Real> &x,
167  const std::vector<Real> &xstat,
168  SampleGenerator<Real> &sampler) {
169  sampler.sumAll(*g_, g);
170  }
171 
173  const Vector<Real> &v,
174  const std::vector<Real> &vstat,
175  const Vector<Real> &x,
176  const std::vector<Real> &xstat,
177  Real &tol) {
178  const Real one(1);
179  Real val = computeValue(obj,x,tol);
180  Real pf1 = plusFunction_->evaluate(val-target_,1);
181  Real pf2 = plusFunction_->evaluate(val-target_,2);
182  Real gv = computeGradVec(*dualVector_,obj,v,x,tol);
183  hv_->axpy(weight_ * coeff_ * pf2 * gv, *dualVector_);
184  computeHessVec(*dualVector_,obj,v,x,tol);
185  hv_->axpy(weight_ * (one + coeff_ * pf1), *dualVector_);
186  }
187 
189  std::vector<Real> &hvstat,
190  const Vector<Real> &v,
191  const std::vector<Real> &vstat,
192  const Vector<Real> &x,
193  const std::vector<Real> &xstat,
194  SampleGenerator<Real> &sampler) {
195  sampler.sumAll(*hv_, hv);
196  }
197 };
198 
199 }
200 
201 #endif
Provides the interface to evaluate objective functions.
void computeHessVec(Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > g_
Real computeValue(Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > hv_
void updateHessVec(Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for Hessian-time-a-vector computation.
Ptr< Vector< Real > > dualVector_
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
Real getValue(const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure value.
void sumAll(Real *input, Real *output, int dim) const
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
void updateGradient(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for gradient computation.
MeanSemiDeviationFromTarget(ROL::ParameterList &parlist)
Constructor.
void getGradient(Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure (sub)gradient.
void updateValue(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal storage for value computation.
void getHessVec(Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure Hessian-times-a-vector.
void computeGradient(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Real computeGradVec(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Provides the interface to implement any functional that maps a random variable to a (extended) real n...
MeanSemiDeviationFromTarget(const Real coeff, const Real target, const Ptr< PlusFunction< Real >> &pf)
Constructor.