ROL
ROL_LinearCombinationObjective_SimOpt.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_LINEARCOMBINATIONOBJECTIVE_SIMOPT_H
45 #define ROL_LINEARCOMBINATIONOBJECTIVE_SIMOPT_H
46 
47 #include "ROL_Objective_SimOpt.hpp"
48 #include "ROL_Ptr.hpp"
49 
50 namespace ROL {
51 
52 template <class Real>
54 private:
55  const std::vector<ROL::Ptr<Objective_SimOpt<Real> > > obj_;
56  std::vector<Real> weights_;
57  size_t size_;
58 
59  ROL::Ptr<Vector<Real> > udual_, zdual_;
61 
62 public:
63  LinearCombinationObjective_SimOpt(const std::vector<ROL::Ptr<Objective_SimOpt<Real> > > &obj)
64  : Objective_SimOpt<Real>(), obj_(obj),
65  udual_(ROL::nullPtr), zdual_(ROL::nullPtr),
66  uinitialized_(false), zinitialized_(false) {
67  size_ = obj_.size();
68  weights_.clear(); weights_.assign(size_,static_cast<Real>(1));
69  }
70 
71  LinearCombinationObjective_SimOpt(const std::vector<Real> &weights,
72  const std::vector<ROL::Ptr<Objective_SimOpt<Real> > > &obj)
73  : Objective_SimOpt<Real>(), obj_(obj),
74  weights_(weights), size_(weights.size()),
75  udual_(ROL::nullPtr), zdual_(ROL::nullPtr),
76  uinitialized_(false), zinitialized_(false) {}
77 
78  void update(const Vector<Real> &u, const Vector<Real> &z, bool flag = true, int iter = -1) {
79  for (size_t i=0; i<size_; ++i) {
80  obj_[i]->update(u,z,flag,iter);
81  }
82  }
83 
84  Real value( const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
85  Real val(0);
86  for (size_t i = 0; i < size_; ++i) {
87  val += weights_[i]*obj_[i]->value(u,z,tol);
88  }
89  return val;
90  }
91 
92  void gradient_1( Vector<Real> &g, const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
93  if (!uinitialized_) {
94  udual_ = g.clone();
95  uinitialized_ = true;
96  }
97  g.zero();
98  for (size_t i = 0; i < size_; ++i) {
99  obj_[i]->gradient_1(*udual_,u,z,tol);
100  g.axpy(weights_[i],*udual_);
101  }
102  }
103 
104  void gradient_2( Vector<Real> &g, const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
105  if (!zinitialized_) {
106  zdual_ = g.clone();
107  zinitialized_ = true;
108  }
109  g.zero();
110  for (size_t i = 0; i < size_; ++i) {
111  obj_[i]->gradient_2(*zdual_,u,z,tol);
112  g.axpy(weights_[i],*zdual_);
113  }
114  }
115 
116  void hessVec_11( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
117  if (!uinitialized_) {
118  udual_ = hv.clone();
119  uinitialized_ = true;
120  }
121  hv.zero();
122  for (size_t i = 0; i < size_; ++i) {
123  obj_[i]->hessVec_11(*udual_,v,u,z,tol);
124  hv.axpy(weights_[i],*udual_);
125  }
126  }
127 
128  void hessVec_12( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
129  if (!uinitialized_) {
130  udual_ = hv.clone();
131  uinitialized_ = true;
132  }
133  hv.zero();
134  for (size_t i = 0; i < size_; ++i) {
135  obj_[i]->hessVec_12(*udual_,v,u,z,tol);
136  hv.axpy(weights_[i],*udual_);
137  }
138  }
139 
140  void hessVec_21( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
141  if (!zinitialized_) {
142  zdual_ = hv.clone();
143  zinitialized_ = true;
144  }
145  hv.zero();
146  for (size_t i = 0; i < size_; ++i) {
147  obj_[i]->hessVec_21(*zdual_,v,u,z,tol);
148  hv.axpy(weights_[i],*zdual_);
149  }
150  }
151 
152  void hessVec_22( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &u, const Vector<Real> &z, Real &tol ) {
153  if (!zinitialized_) {
154  zdual_ = hv.clone();
155  zinitialized_ = true;
156  }
157  hv.zero();
158  for (size_t i = 0; i < size_; ++i) {
159  obj_[i]->hessVec_22(*zdual_,v,u,z,tol);
160  hv.axpy(weights_[i],*zdual_);
161  }
162  }
163 
164 // Definitions for parametrized (stochastic) objective functions
165 public:
166  void setParameter(const std::vector<Real> &param) {
168  for (size_t i = 0; i < size_; ++i) {
169  obj_[i]->setParameter(param);
170  }
171  }
172 }; // class LinearCombinationObjective
173 
174 } // namespace ROL
175 
176 #endif
void hessVec_12(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
Provides the interface to evaluate simulation-based objective functions.
void update(const Vector< Real > &u, const Vector< Real > &z, bool flag=true, int iter=-1)
Update objective function. u is an iterate, z is an iterate, flag = true if the iterate has changed...
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
LinearCombinationObjective_SimOpt(const std::vector< ROL::Ptr< Objective_SimOpt< Real > > > &obj)
const double weights[4][5]
Definition: ROL_Types.hpp:866
Real value(const Vector< Real > &u, const Vector< Real > &z, Real &tol)
Compute value.
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:153
const std::vector< ROL::Ptr< Objective_SimOpt< Real > > > obj_
void hessVec_22(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
virtual void zero()
Set to zero vector.
Definition: ROL_Vector.hpp:167
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
void gradient_1(Vector< Real > &g, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
Compute gradient with respect to first component.
LinearCombinationObjective_SimOpt(const std::vector< Real > &weights, const std::vector< ROL::Ptr< Objective_SimOpt< Real > > > &obj)
void hessVec_21(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
void gradient_2(Vector< Real > &g, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
Compute gradient with respect to second component.
virtual void setParameter(const std::vector< Real > &param)
void hessVec_11(Vector< Real > &hv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, Real &tol)
Apply Hessian approximation to vector.