ROL
ROL_InteriorPointStep.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_INTERIORPOINTSTEP_H
45 #define ROL_INTERIORPOINTSTEP_H
46 
47 #include "ROL_CompositeStep.hpp"
49 #include "ROL_FletcherStep.hpp"
50 #include "ROL_BundleStep.hpp"
51 #include "ROL_TrustRegionStep.hpp"
52 #include "ROL_LineSearchStep.hpp"
54 #include "ROL_BundleStatusTest.hpp"
55 #include "ROL_InteriorPoint.hpp"
57 #include "ROL_Types.hpp"
59 
60 
61 namespace ROL {
62 
63 template<class Real>
64 class AugmentedLagrangianStep;
65 
66 template <class Real>
67 class InteriorPointStep : public Step<Real> {
68 
71 
72 private:
73 
74  ROL::Ptr<StatusTest<Real> > status_;
75  ROL::Ptr<Step<Real> > step_;
76  ROL::Ptr<Algorithm<Real> > algo_;
77  ROL::Ptr<BoundConstraint<Real> > bnd_;
78  ROL::ParameterList parlist_;
79 
80  // Storage
81  ROL::Ptr<Vector<Real> > x_;
82  ROL::Ptr<Vector<Real> > g_;
83  ROL::Ptr<Vector<Real> > l_;
84  ROL::Ptr<Vector<Real> > c_;
85 
86  Real mu_; // Barrier parameter
87  Real mumin_; // Minimal value of barrier parameter
88  Real mumax_; // Maximal value of barrier parameter
89  Real rho_; // Barrier parameter reduction factor
90 
91  // For the subproblem
92  int subproblemIter_; // Status test maximum number of iterations
93 
94  int verbosity_; // Adjust level of detail in printing step information
95  bool print_;
96 
98 
100  std::string stepname_;
101 
102 public:
103 
105  using Step<Real>::compute;
106  using Step<Real>::update;
107 
109 
110  InteriorPointStep(ROL::ParameterList &parlist) :
111  Step<Real>(),
112  status_(ROL::nullPtr),
113  step_(ROL::nullPtr),
114  algo_(ROL::nullPtr),
115  parlist_(parlist),
116  x_(ROL::nullPtr),
117  g_(ROL::nullPtr),
118  l_(ROL::nullPtr),
119  c_(ROL::nullPtr),
120  hasEquality_(false),
122  stepname_("Composite Step") {
123 
124  using ROL::ParameterList;
125 
126  verbosity_ = parlist.sublist("General").get("Print Verbosity",0);
127 
128  // List of general Interior Point parameters
129  ParameterList& iplist = parlist.sublist("Step").sublist("Interior Point");
130  mu_ = iplist.get("Initial Barrier Penalty",1.0);
131  mumin_ = iplist.get("Minimum Barrier Penalty",1.e-4);
132  mumax_ = iplist.get("Maximum Barrier Penalty",1e8);
133  rho_ = iplist.get("Barrier Penalty Reduction Factor",0.5);
134 
135  // Subproblem step information
136  print_ = iplist.sublist("Subproblem").get("Print History",false);
137  Real gtol = iplist.sublist("Subproblem").get("Optimality Tolerance",1e-8);
138  Real ctol = iplist.sublist("Subproblem").get("Feasibility Tolerance",1e-8);
139  Real stol = static_cast<Real>(1e-6)*std::min(gtol,ctol);
140  int maxit = iplist.sublist("Subproblem").get("Iteration Limit",1000);
141  parlist_.sublist("Status Test").set("Gradient Tolerance", gtol);
142  parlist_.sublist("Status Test").set("Constraint Tolerance", ctol);
143  parlist_.sublist("Status Test").set("Step Tolerance", stol);
144  parlist_.sublist("Status Test").set("Iteration Limit", maxit);
145  // Get step name from parameterlist
146  stepname_ = iplist.sublist("Subproblem").get("Step Type","Composite Step");
148  }
149 
152  void initialize( Vector<Real> &x, const Vector<Real> &g,
153  Vector<Real> &l, const Vector<Real> &c,
154  Objective<Real> &obj, Constraint<Real> &con,
155  AlgorithmState<Real> &algo_state ) {
156  hasEquality_ = true;
157 
158  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
159  state->descentVec = x.clone();
160  state->gradientVec = g.clone();
161  state->constraintVec = c.clone();
162 
163  // Initialize storage
164  x_ = x.clone();
165  g_ = g.clone();
166  l_ = l.clone();
167  c_ = c.clone();
168 
169  x_->set(x);
170 
171  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
172  auto& ipcon = dynamic_cast<IPCON&>(con);
173 
174  // Set initial penalty
175  ipobj.updatePenalty(mu_);
176 
177  algo_state.nfval = 0;
178  algo_state.ncval = 0;
179  algo_state.ngrad = 0;
180 
181  Real zerotol = 0.0;
182  obj.update(x,true,algo_state.iter);
183  algo_state.value = obj.value(x,zerotol);
184 
185  obj.gradient(*g_,x,zerotol);
186  algo_state.gnorm = g_->norm();
187 
188  con.value(*c_,x,zerotol);
189  algo_state.cnorm = c_->norm();
190 
191  algo_state.nfval += ipobj.getNumberFunctionEvaluations();
192  algo_state.ngrad += ipobj.getNumberGradientEvaluations();
193  algo_state.ncval += ipcon.getNumberConstraintEvaluations();
194 
195  }
196 
197 
198 
201  AlgorithmState<Real> &algo_state ) {
202  bnd.projectInterior(x);
203  initialize(x,g,l,c,obj,con,algo_state);
204  }
205 
206 
209  void initialize( Vector<Real> &x, const Vector<Real> &g,
211  AlgorithmState<Real> &algo_state ) {
212  bnd.projectInterior(x);
213 
214  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
215  state->descentVec = x.clone();
216  state->gradientVec = g.clone();
217 
218  // Initialize storage
219  x_ = x.clone(); x_->set(x);
220  g_ = g.clone();
221 
222  // Set initial penalty
223  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
224  ipobj.updatePenalty(mu_);
225 
226  algo_state.nfval = 0;
227  algo_state.ncval = 0;
228  algo_state.ngrad = 0;
229 
230  Real zerotol = std::sqrt(ROL_EPSILON<Real>());
231  obj.update(x,true,algo_state.iter);
232  algo_state.value = obj.value(x,zerotol);
233 
234  obj.gradient(*g_,x,zerotol);
235  algo_state.gnorm = g_->norm();
236 
237  algo_state.cnorm = static_cast<Real>(0);
238 
239  algo_state.nfval += ipobj.getNumberFunctionEvaluations();
240  algo_state.ngrad += ipobj.getNumberGradientEvaluations();
241 
242  bnd_ = ROL::makePtr<BoundConstraint<Real>>();
243  bnd_->deactivate();
244  }
245 
246 
247 
251  const Vector<Real> &x,
252  const Vector<Real> &l,
253  Objective<Real> &obj,
254  Constraint<Real> &con,
255  AlgorithmState<Real> &algo_state ) {
256  // Grab interior point objective and constraint
257  //auto& ipobj = dynamic_cast<IPOBJ&>(obj);
258  //auto& ipcon = dynamic_cast<IPCON&>(con);
259 
260  Real one(1);
261  // Create the algorithm
262  Ptr<Objective<Real>> penObj;
264  Ptr<Objective<Real>> raw_obj = makePtrFromRef(obj);
265  Ptr<Constraint<Real>> raw_con = makePtrFromRef(con);
266  Ptr<StepState<Real>> state = Step<Real>::getState();
267  penObj = makePtr<AugmentedLagrangian<Real>>(raw_obj,raw_con,l,one,x,*(state->constraintVec),parlist_);
268  step_ = makePtr<AugmentedLagrangianStep<Real>>(parlist_);
269  }
270  else if (stepType_ == STEP_FLETCHER) {
271  Ptr<Objective<Real>> raw_obj = makePtrFromRef(obj);
272  Ptr<Constraint<Real>> raw_con = makePtrFromRef(con);
273  Ptr<StepState<Real>> state = Step<Real>::getState();
274  penObj = makePtr<Fletcher<Real>>(raw_obj,raw_con,x,*(state->constraintVec),parlist_);
275  step_ = makePtr<FletcherStep<Real>>(parlist_);
276  }
277  else {
278  penObj = makePtrFromRef(obj);
279  stepname_ = "Composite Step";
281  step_ = makePtr<CompositeStep<Real>>(parlist_);
282  }
283  status_ = makePtr<ConstraintStatusTest<Real>>(parlist_);
284  algo_ = ROL::makePtr<Algorithm<Real>>(step_,status_,false);
285 
286  // Run the algorithm
287  x_->set(x); l_->set(l);
288  algo_->run(*x_,*g_,*l_,*c_,*penObj,con,print_);
289  s.set(*x_); s.axpy(-one,x);
290 
291  // Get number of iterations from the subproblem solve
292  subproblemIter_ = (algo_->getState())->iter;
293  }
294 
296  const Vector<Real> &x,
297  const Vector<Real> &l,
298  Objective<Real> &obj,
299  Constraint<Real> &con,
301  AlgorithmState<Real> &algo_state ) {
302  compute(s,x,l,obj,con,algo_state);
303  }
304 
305  // Bound constrained
307  const Vector<Real> &x,
308  Objective<Real> &obj,
310  AlgorithmState<Real> &algo_state ) {
311  // Grab interior point objective and constraint
312  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
313 
314  // Create the algorithm
315  if (stepType_ == STEP_BUNDLE) {
316  status_ = makePtr<BundleStatusTest<Real>>(parlist_);
317  step_ = makePtr<BundleStep<Real>>(parlist_);
318  }
319  else if (stepType_ == STEP_LINESEARCH) {
320  status_ = makePtr<StatusTest<Real>>(parlist_);
321  step_ = makePtr<LineSearchStep<Real>>(parlist_);
322  }
323  else {
324  status_ = makePtr<StatusTest<Real>>(parlist_);
325  step_ = makePtr<TrustRegionStep<Real>>(parlist_);
326  }
327  algo_ = ROL::makePtr<Algorithm<Real>>(step_,status_,false);
328 
329  // Run the algorithm
330  x_->set(x);
331  algo_->run(*x_,*g_,ipobj,*bnd_,print_);
332  s.set(*x_); s.axpy(static_cast<Real>(-1),x);
333 
334  // Get number of iterations from the subproblem solve
335  subproblemIter_ = (algo_->getState())->iter;
336  }
337 
338 
339 
343  Vector<Real> &l,
344  const Vector<Real> &s,
345  Objective<Real> &obj,
346  Constraint<Real> &con,
347  AlgorithmState<Real> &algo_state ) {
348  // Grab interior point objective and constraint
349  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
350  auto& ipcon = dynamic_cast<IPCON&>(con);
351 
352  // If we can change the barrier parameter, do so
353  if( (rho_< 1.0 && mu_ > mumin_) || (rho_ > 1.0 && mu_ < mumax_) ) {
354  mu_ *= rho_;
355  ipobj.updatePenalty(mu_);
356  }
357 
358  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
359  state->SPiter = subproblemIter_;
360 
361  // Update optimization vector
362  x.plus(s);
363 
364  algo_state.iterateVec->set(x);
365  state->descentVec->set(s);
366  algo_state.snorm = s.norm();
367  algo_state.iter++;
368 
369  Real zerotol = 0.0;
370 
371  algo_state.value = ipobj.value(x,zerotol);
372  algo_state.value = ipobj.getObjectiveValue();
373 
374  ipcon.value(*c_,x,zerotol);
375  state->constraintVec->set(*c_);
376 
377  ipobj.gradient(*g_,x,zerotol);
378  state->gradientVec->set(*g_);
379 
380  ipcon.applyAdjointJacobian(*g_,*l_,x,zerotol);
381  state->gradientVec->plus(*g_);
382 
383  algo_state.gnorm = g_->norm();
384  algo_state.cnorm = state->constraintVec->norm();
385  algo_state.snorm = s.norm();
386 
387  algo_state.nfval += ipobj.getNumberFunctionEvaluations();
388  algo_state.ngrad += ipobj.getNumberGradientEvaluations();
389  algo_state.ncval += ipcon.getNumberConstraintEvaluations();
390 
391  }
392 
394  Vector<Real> &l,
395  const Vector<Real> &s,
396  Objective<Real> &obj,
397  Constraint<Real> &con,
399  AlgorithmState<Real> &algo_state ) {
400  update(x,l,s,obj,con,algo_state);
401 
402  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
403  x_->set(x);
404  x_->axpy(static_cast<Real>(-1),state->gradientVec->dual());
405  bnd.project(*x_);
406  x_->axpy(static_cast<Real>(-1),x);
407  algo_state.gnorm = x_->norm();
408  }
409 
411  const Vector<Real> &s,
412  Objective<Real> &obj,
414  AlgorithmState<Real> &algo_state ) {
415  // Grab interior point objective
416  auto& ipobj = dynamic_cast<IPOBJ&>(obj);
417 
418  // If we can change the barrier parameter, do so
419  if( (rho_< 1.0 && mu_ > mumin_) || (rho_ > 1.0 && mu_ < mumax_) ) {
420  mu_ *= rho_;
421  ipobj.updatePenalty(mu_);
422  }
423 
424  ROL::Ptr<StepState<Real> > state = Step<Real>::getState();
425 
426  // Update optimization vector
427  x.plus(s);
428 
429  algo_state.iterateVec->set(x);
430  state->descentVec->set(s);
431  algo_state.snorm = s.norm();
432  algo_state.iter++;
433 
434  Real zerotol = std::sqrt(ROL_EPSILON<Real>());
435 
436  algo_state.value = ipobj.value(x,zerotol);
437  algo_state.value = ipobj.getObjectiveValue();
438 
439  ipobj.gradient(*g_,x,zerotol);
440  state->gradientVec->set(*g_);
441 
442  x_->set(x);
443  x_->axpy(static_cast<Real>(-1),state->gradientVec->dual());
444  bnd.project(*x_);
445  x_->axpy(static_cast<Real>(-1),x);
446 
447  algo_state.gnorm = x_->norm();
448  algo_state.snorm = s.norm();
449 
450  algo_state.nfval += ipobj.getNumberFunctionEvaluations();
451  algo_state.ngrad += ipobj.getNumberGradientEvaluations();
452  }
453 
456  std::string printHeader( void ) const {
457  std::stringstream hist;
458 
459  if( verbosity_ > 0 ) {
460 
461  hist << std::string(116,'-') << "\n";
462  hist << "Interior Point status output definitions\n\n";
463 
464  hist << " IPiter - Number of interior point steps taken\n";
465  hist << " SPiter - Number of subproblem solver iterations\n";
466  hist << " penalty - Penalty parameter multiplying the barrier objective\n";
467  hist << " fval - Number of objective evaluations\n";
468  if (hasEquality_) {
469  hist << " cnorm - Norm of the composite constraint\n";
470  hist << " gLnorm - Norm of the Lagrangian's gradient\n";
471  }
472  else {
473  hist << " gnorm - Norm of the projected norm of the objective gradient\n";
474  }
475  hist << " snorm - Norm of step (update to optimzation and slack vector)\n";
476  hist << " #fval - Number of objective function evaluations\n";
477  hist << " #grad - Number of gradient evaluations\n";
478  if (hasEquality_) {
479  hist << " #cval - Number of composite constraint evaluations\n";
480  }
481  hist << std::string(116,'-') << "\n";
482  }
483 
484  hist << " ";
485  hist << std::setw(9) << std::left << "IPiter";
486  hist << std::setw(9) << std::left << "SPiter";
487  hist << std::setw(15) << std::left << "penalty";
488  hist << std::setw(15) << std::left << "fval";
489  if (hasEquality_) {
490  hist << std::setw(15) << std::left << "cnorm";
491  hist << std::setw(15) << std::left << "gLnorm";
492  }
493  else {
494  hist << std::setw(15) << std::left << "gnorm";
495  }
496  hist << std::setw(15) << std::left << "snorm";
497  hist << std::setw(8) << std::left << "#fval";
498  hist << std::setw(8) << std::left << "#grad";
499  if (hasEquality_) {
500  hist << std::setw(8) << std::left << "#cval";
501  }
502 
503  hist << "\n";
504  return hist.str();
505  }
506 
509  std::string printName( void ) const {
510  std::stringstream hist;
511  hist << "\n" << "Primal Interior Point Solver\n";
512  return hist.str();
513  }
514 
517  std::string print( AlgorithmState<Real> &algo_state, bool pHeader = false ) const {
518  std::stringstream hist;
519  hist << std::scientific << std::setprecision(6);
520  if ( algo_state.iter == 0 ) {
521  hist << printName();
522  }
523  if ( pHeader ) {
524  hist << printHeader();
525  }
526  if ( algo_state.iter == 0 ) {
527  hist << " ";
528  hist << std::setw(9) << std::left << algo_state.iter;
529  hist << std::setw(9) << std::left << subproblemIter_;
530  hist << std::setw(15) << std::left << mu_;
531  hist << std::setw(15) << std::left << algo_state.value;
532  if (hasEquality_) {
533  hist << std::setw(15) << std::left << algo_state.cnorm;
534  }
535  hist << std::setw(15) << std::left << algo_state.gnorm;
536  hist << "\n";
537  }
538  else {
539  hist << " ";
540  hist << std::setw(9) << std::left << algo_state.iter;
541  hist << std::setw(9) << std::left << subproblemIter_;
542  hist << std::setw(15) << std::left << mu_;
543  hist << std::setw(15) << std::left << algo_state.value;
544  if (hasEquality_) {
545  hist << std::setw(15) << std::left << algo_state.cnorm;
546  }
547  hist << std::setw(15) << std::left << algo_state.gnorm;
548  hist << std::setw(15) << std::left << algo_state.snorm;
549 // hist << std::scientific << std::setprecision(6);
550  hist << std::setw(8) << std::left << algo_state.nfval;
551  hist << std::setw(8) << std::left << algo_state.ngrad;
552  if (hasEquality_) {
553  hist << std::setw(8) << std::left << algo_state.ncval;
554  }
555  hist << "\n";
556  }
557  return hist.str();
558  }
559 
560 }; // class InteriorPointStep
561 
562 } // namespace ROL
563 
564 #endif // ROL_INTERIORPOINTSTEP_H
Provides the interface to evaluate objective functions.
EStep StringToEStep(std::string s)
Definition: ROL_Types.hpp:389
virtual void projectInterior(Vector< Real > &x)
Project optimization variables into the interior of the feasible set.
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
Constraint_Partitioned< Real > IPCON
void update(Vector< Real > &x, Vector< Real > &l, const Vector< Real > &s, Objective< Real > &obj, Constraint< Real > &con, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Update step, if successful (equality constraints).
void initialize(Vector< Real > &x, const Vector< Real > &g, Vector< Real > &l, const Vector< Real > &c, Objective< Real > &obj, Constraint< Real > &con, AlgorithmState< Real > &algo_state)
Initialize step with equality constraint.
virtual void plus(const Vector &x)=0
Compute , where .
InteriorPoint::PenalizedObjective< Real > IPOBJ
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
Definition: ROL_Vector.hpp:153
ROL::Ptr< Vector< Real > > c_
virtual Real value(const Vector< Real > &x, Real &tol)=0
Compute value.
Provides the interface to compute optimization steps.
Definition: ROL_Step.hpp:68
ROL::Ptr< Step< Real > > step_
Contains definitions of custom data types in ROL.
void compute(Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Compute step.
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
virtual void value(Vector< Real > &c, const Vector< Real > &x, Real &tol)=0
Evaluate the constraint operator at .
ROL::Ptr< Vector< Real > > g_
State for algorithm class. Will be used for restarts.
Definition: ROL_Types.hpp:143
virtual void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
void initialize(Vector< Real > &x, const Vector< Real > &g, Vector< Real > &l, const Vector< Real > &c, Objective< Real > &obj, Constraint< Real > &con, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Initialize step with equality constraint.
ROL::Ptr< Algorithm< Real > > algo_
ROL::Ptr< StepState< Real > > getState(void)
Definition: ROL_Step.hpp:73
void update(Vector< Real > &x, Vector< Real > &l, const Vector< Real > &s, Objective< Real > &obj, Constraint< Real > &con, AlgorithmState< Real > &algo_state)
Update step, if successful (equality constraints).
Has both inequality and equality constraints. Treat inequality constraint as equality with slack vari...
void initialize(Vector< Real > &x, const Vector< Real > &g, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Initialize step with no equality constraint.
ROL::Ptr< Vector< Real > > iterateVec
Definition: ROL_Types.hpp:157
ROL::Ptr< Vector< Real > > x_
InteriorPointStep(ROL::ParameterList &parlist)
void compute(Vector< Real > &s, const Vector< Real > &x, const Vector< Real > &l, Objective< Real > &obj, Constraint< Real > &con, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Compute step (equality constraints).
std::string print(AlgorithmState< Real > &algo_state, bool pHeader=false) const
Print iterate status.
Provides the interface to apply upper and lower bound constraints.
void update(Vector< Real > &x, const Vector< Real > &s, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Update step, if successful.
std::string printName(void) const
Print step name.
std::string printHeader(void) const
Print iterate header.
ROL::Ptr< StatusTest< Real > > status_
void compute(Vector< Real > &s, const Vector< Real > &x, const Vector< Real > &l, Objective< Real > &obj, Constraint< Real > &con, AlgorithmState< Real > &algo_state)
Compute step (equality constraints).
ROL::Ptr< Vector< Real > > l_
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:209
virtual Real norm() const =0
Returns where .
virtual void update(const Vector< Real > &x, bool flag=true, int iter=-1)
Update objective function.
ROL::Ptr< BoundConstraint< Real > > bnd_
EStep
Enumeration of step types.
Definition: ROL_Types.hpp:274
Defines the general constraint operator interface.
virtual void project(Vector< Real > &x)
Project optimization variables onto the bounds.