ROL
ROL_GradientStep.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_GRADIENTSTEP_H
45 #define ROL_GRADIENTSTEP_H
46 
47 #include "ROL_Types.hpp"
48 #include "ROL_Step.hpp"
49 #include "ROL_Secant.hpp"
50 
57 namespace ROL {
58 
59 template <class Real>
60 class GradientStep : public Step<Real> {
61 private:
62 
63  int verbosity_;
64  const bool computeObj_;
65 
66 public:
67 
69  using Step<Real>::compute;
70  using Step<Real>::update;
71 
79  GradientStep( ROL::ParameterList &parlist, const bool computeObj = true )
80  : Step<Real>(), verbosity_(0), computeObj_(computeObj) {
81  // Parse ParameterList
82  verbosity_ = parlist.sublist("General").get("Print Verbosity",0);
83  }
84 
85  void compute( Vector<Real> &s, const Vector<Real> &x,
87  AlgorithmState<Real> &algo_state ) {
88  Real one(1);
89  ROL::Ptr<StepState<Real> > step_state = Step<Real>::getState();
90 
91  // Compute search direction
92  s.set((step_state->gradientVec)->dual());
93  s.scale(-one);
94  }
95 
97  AlgorithmState<Real> &algo_state ) {
98  Real tol = std::sqrt(ROL_EPSILON<Real>());
99  ROL::Ptr<StepState<Real> > step_state = Step<Real>::getState();
100 
101  // Update iterate and store step
102  algo_state.iter++;
103  x.plus(s);
104  (step_state->descentVec)->set(s);
105  algo_state.snorm = s.norm();
106 
107  // Compute new gradient
108  obj.update(x,true,algo_state.iter);
109  if ( computeObj_ ) {
110  algo_state.value = obj.value(x,tol);
111  algo_state.nfval++;
112  }
113  obj.gradient(*(step_state->gradientVec),x,tol);
114  algo_state.ngrad++;
115 
116  // Update algorithm state
117  (algo_state.iterateVec)->set(x);
118  algo_state.gnorm = (step_state->gradientVec)->norm();
119  }
120 
121  std::string printHeader( void ) const {
122  std::stringstream hist;
123 
124  if( verbosity_>0 ) {
125  hist << std::string(109,'-') << "\n";
127  hist << " status output definitions\n\n";
128  hist << " iter - Number of iterates (steps taken) \n";
129  hist << " value - Objective function value \n";
130  hist << " gnorm - Norm of the gradient\n";
131  hist << " snorm - Norm of the step (update to optimization vector)\n";
132  hist << " #fval - Cumulative number of times the objective function was evaluated\n";
133  hist << " #grad - Number of times the gradient was computed\n";
134  hist << std::string(109,'-') << "\n";
135  }
136 
137  hist << " ";
138  hist << std::setw(6) << std::left << "iter";
139  hist << std::setw(15) << std::left << "value";
140  hist << std::setw(15) << std::left << "gnorm";
141  hist << std::setw(15) << std::left << "snorm";
142  hist << std::setw(10) << std::left << "#fval";
143  hist << std::setw(10) << std::left << "#grad";
144  hist << "\n";
145  return hist.str();
146  }
147  std::string printName( void ) const {
148  std::stringstream hist;
149  hist << "\n" << EDescentToString(DESCENT_STEEPEST) << "\n";
150  return hist.str();
151  }
152  std::string print( AlgorithmState<Real> &algo_state, bool print_header = false ) const {
153  std::stringstream hist;
154  hist << std::scientific << std::setprecision(6);
155  if ( algo_state.iter == 0 ) {
156  hist << printName();
157  }
158  if ( print_header ) {
159  hist << printHeader();
160  }
161  if ( algo_state.iter == 0 ) {
162  hist << " ";
163  hist << std::setw(6) << std::left << algo_state.iter;
164  hist << std::setw(15) << std::left << algo_state.value;
165  hist << std::setw(15) << std::left << algo_state.gnorm;
166  hist << "\n";
167  }
168  else {
169  hist << " ";
170  hist << std::setw(6) << std::left << algo_state.iter;
171  hist << std::setw(15) << std::left << algo_state.value;
172  hist << std::setw(15) << std::left << algo_state.gnorm;
173  hist << std::setw(15) << std::left << algo_state.snorm;
174  hist << std::setw(10) << std::left << algo_state.nfval;
175  hist << std::setw(10) << std::left << algo_state.ngrad;
176  hist << "\n";
177  }
178  return hist.str();
179  }
180 }; // class GradientStep
181 
182 } // namespace ROL
183 #endif
Provides the interface to evaluate objective functions.
virtual void scale(const Real alpha)=0
Compute where .
virtual void plus(const Vector &x)=0
Compute , where .
virtual Real value(const Vector< Real > &x, Real &tol)=0
Compute value.
Provides the interface to compute optimization steps.
Definition: ROL_Step.hpp:68
std::string print(AlgorithmState< Real > &algo_state, bool print_header=false) const
Print iterate status.
Contains definitions of custom data types in ROL.
void compute(Vector< Real > &s, const Vector< Real > &x, Objective< Real > &obj, BoundConstraint< Real > &bnd, AlgorithmState< Real > &algo_state)
Compute step.
std::string EDescentToString(EDescent tr)
Definition: ROL_Types.hpp:418
GradientStep(ROL::ParameterList &parlist, const bool computeObj=true)
Constructor.
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
State for algorithm class. Will be used for restarts.
Definition: ROL_Types.hpp:143
virtual void gradient(Vector< Real > &g, const Vector< Real > &x, Real &tol)
Compute gradient.
std::string printHeader(void) const
Print iterate header.
ROL::Ptr< StepState< Real > > getState(void)
Definition: ROL_Step.hpp:73
ROL::Ptr< Vector< Real > > iterateVec
Definition: ROL_Types.hpp:157
int verbosity_
Verbosity setting.
Provides the interface to apply upper and lower bound constraints.
void update(Vector< Real > &x, const Vector< Real > &s, Objective< Real > &obj, BoundConstraint< Real > &con, AlgorithmState< Real > &algo_state)
Update step, if successful.
virtual void set(const Vector &x)
Set where .
Definition: ROL_Vector.hpp:209
virtual Real norm() const =0
Returns where .
virtual void update(const Vector< Real > &x, bool flag=true, int iter=-1)
Update objective function.
Provides the interface to compute optimization steps with the gradient descent method globalized usin...
std::string printName(void) const
Print step name.
const bool computeObj_
Allows line search to compute objective.