ROL
ROL_ExpectationQuadRisk.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_EXPECTATIONQUADRISK_HPP
45 #define ROL_EXPECTATIONQUADRISK_HPP
46 
47 #include "ROL_ExpectationQuad.hpp"
49 #include "ROL_Types.hpp"
50 
86 namespace ROL {
87 
88 template<class Real>
89 class ExpectationQuadRisk : public RandVarFunctional<Real> {
90 private:
91  Ptr<ExpectationQuad<Real>> eq_;
92 
98 
101 
106 
107 public:
109  : RandVarFunctional<Real>(), eq_(eq) {}
110 
113  void checkRegret(void) {
114  eq_->check();
115  }
116 
118  const Vector<Real> &x,
119  const std::vector<Real> &xstat,
120  Real &tol) {
121  Real val = computeValue(obj,x,tol);
122  Real r = eq_->regret(val-xstat[0],0);
123  val_ += weight_ * r;
124  }
125 
127  const Vector<Real> &x,
128  const std::vector<Real> &xstat,
129  Real &tol) {
130  Real val = computeValue(obj,x,tol);
131  Real r = eq_->regret(val-xstat[0],1);
132  if (std::abs(r) >= ROL_EPSILON<Real>()) {
133  val_ -= weight_ * r;
134  computeGradient(*dualVector_,obj,x,tol);
135  g_->axpy(weight_*r,*dualVector_);
136  }
137  }
138 
140  const Vector<Real> &v,
141  const std::vector<Real> &vstat,
142  const Vector<Real> &x,
143  const std::vector<Real> &xstat,
144  Real &tol) {
145  Real val = computeValue(obj,x,tol);
146  Real r1 = eq_->regret(val-xstat[0],1);
147  Real r2 = eq_->regret(val-xstat[0],2);
148  if (std::abs(r2) >= ROL_EPSILON<Real>()) {
149  Real gv = computeGradVec(*dualVector_,obj,v,x,tol);
150  val_ += weight_ * r2 * (vstat[0] - gv);
151  hv_->axpy(weight_*r2*(gv-vstat[0]),*dualVector_);
152  }
153  if (std::abs(r1) >= ROL_EPSILON<Real>()) {
154  computeHessVec(*dualVector_,obj,v,x,tol);
155  hv_->axpy(weight_*r1,*dualVector_);
156  }
157  }
158 
159  Real getValue(const Vector<Real> &x,
160  const std::vector<Real> &xstat,
161  SampleGenerator<Real> &sampler) {
162  Real val(0);
163  sampler.sumAll(&val_,&val,1);
164  val += xstat[0];
165  return val;
166  }
167 
169  std::vector<Real> &gstat,
170  const Vector<Real> &x,
171  const std::vector<Real> &xstat,
172  SampleGenerator<Real> &sampler) {
173  Real stat(0), one(1);
174  sampler.sumAll(&val_,&stat,1);
175  stat += one;
176  gstat[0] = stat;
177  sampler.sumAll(*g_,g);
178  }
179 
181  std::vector<Real> &hvstat,
182  const Vector<Real> &v,
183  const std::vector<Real> &vstat,
184  const Vector<Real> &x,
185  const std::vector<Real> &xstat,
186  SampleGenerator<Real> &sampler) {
187  Real stat(0);
188  sampler.sumAll(&val_,&stat,1);
189  hvstat[0] = stat;
190  sampler.sumAll(*hv_,hv);
191  }
192 };
193 
194 }
195 
196 #endif
Provides the interface to evaluate objective functions.
Real getValue(const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure value.
void computeHessVec(Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > g_
Provides a general interface for risk and error measures generated through the expectation risk quadr...
Real computeValue(Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > hv_
void getGradient(Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure (sub)gradient.
Contains definitions of custom data types in ROL.
void getHessVec(Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure Hessian-times-a-vector.
Ptr< Vector< Real > > dualVector_
void updateGradient(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for gradient computation.
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
void sumAll(Real *input, Real *output, int dim) const
void checkRegret(void)
Run derivative tests for the scalar regret function.
ExpectationQuadRisk(const Ptr< ExpectationQuad< Real >> &eq)
void updateHessVec(Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for Hessian-time-a-vector computation.
void updateValue(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal storage for value computation.
void computeGradient(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Ptr< ExpectationQuad< Real > > eq_
Real computeGradVec(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Provides the interface to implement any functional that maps a random variable to a (extended) real n...