ROL
ROL_CVaR.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
44 #ifndef ROL_CVAR_HPP
45 #define ROL_CVAR_HPP
46 
48 #include "ROL_PlusFunction.hpp"
49 
75 namespace ROL {
76 
77 template<class Real>
78 class CVaR : public RandVarFunctional<Real> {
79 private:
80  Ptr<PlusFunction<Real> > plusFunction_;
81  Real prob_;
82  Real coeff_;
83 
89 
92 
97 
98  void checkInputs(void) const {
99  Real zero(0), one(1);
100  ROL_TEST_FOR_EXCEPTION((prob_ <= zero) || (prob_ >= one), std::invalid_argument,
101  ">>> ERROR (ROL::CVaR): Confidence level must be between 0 and 1!");
102  ROL_TEST_FOR_EXCEPTION((coeff_ < zero) || (coeff_ > one), std::invalid_argument,
103  ">>> ERROR (ROL::CVaR): Convex combination parameter must be positive!");
104  ROL_TEST_FOR_EXCEPTION(plusFunction_ == nullPtr, std::invalid_argument,
105  ">>> ERROR (ROL::CVaR): PlusFunction pointer is null!");
106  }
107 
108 public:
109 
118  CVaR( const Real prob, const Real coeff,
119  const Ptr<PlusFunction<Real> > &pf )
120  : RandVarFunctional<Real>(), plusFunction_(pf), prob_(prob), coeff_(coeff) {
121  checkInputs();
122  }
123 
134  CVaR( ROL::ParameterList &parlist )
135  : RandVarFunctional<Real>() {
136  ROL::ParameterList &list
137  = parlist.sublist("SOL").sublist("Risk Measure").sublist("CVaR");
138  // Check CVaR inputs
139  prob_ = list.get<Real>("Confidence Level");
140  coeff_ = list.get<Real>("Convex Combination Parameter");
141  // Build (approximate) plus function
142  plusFunction_ = makePtr<PlusFunction<Real>>(list);
143  // Check Inputs
144  checkInputs();
145  }
146 
148  const Vector<Real> &x,
149  const std::vector<Real> &xstat,
150  Real &tol) {
151  Real one(1);
152  Real val = computeValue(obj,x,tol);
153  Real pf = plusFunction_->evaluate(val-xstat[0],0);
154  val_ += weight_*((one-coeff_)*val + coeff_/(one-prob_)*pf);
155  }
156 
158  const Vector<Real> &x,
159  const std::vector<Real> &xstat,
160  Real &tol) {
161  Real one(1);
162  Real val = computeValue(obj,x,tol);
163  Real pf = plusFunction_->evaluate(val-xstat[0],1);
164  val_ += weight_*pf;
165  Real c = (one-coeff_) + coeff_/(one-prob_)*pf;
166  if (std::abs(c) >= ROL_EPSILON<Real>()) {
167  computeGradient(*dualVector_,obj,x,tol);
168  g_->axpy(weight_*c,*dualVector_);
169  }
170  }
171 
173  const Vector<Real> &v,
174  const std::vector<Real> &vstat,
175  const Vector<Real> &x,
176  const std::vector<Real> &xstat,
177  Real &tol) {
178  Real one(1);
179  Real val = computeValue(obj,x,tol);
180  Real pf1 = plusFunction_->evaluate(val-xstat[0],1);
181  Real pf2 = plusFunction_->evaluate(val-xstat[0],2);
182  Real c(0);
183  if (std::abs(pf2) >= ROL_EPSILON<Real>()) {
184  Real gv = computeGradVec(*dualVector_,obj,v,x,tol);
185  val_ += weight_*pf2*(vstat[0]-gv);
186  c = pf2*coeff_/(one-prob_)*(gv-vstat[0]);
187  hv_->axpy(weight_*c,*dualVector_);
188  }
189  c = (one-coeff_) + coeff_/(one-prob_)*pf1;
190  if (std::abs(c) >= ROL_EPSILON<Real>()) {
191  computeHessVec(*dualVector_,obj,v,x,tol);
192  hv_->axpy(weight_*c,*dualVector_);
193  }
194  }
195 
196  Real getValue(const Vector<Real> &x,
197  const std::vector<Real> &xstat,
198  SampleGenerator<Real> &sampler) {
199  Real cvar(0);
200  sampler.sumAll(&val_,&cvar,1);
201  cvar += coeff_*xstat[0];
202  return cvar;
203  }
204 
206  std::vector<Real> &gstat,
207  const Vector<Real> &x,
208  const std::vector<Real> &xstat,
209  SampleGenerator<Real> &sampler) {
210  Real var(0), one(1);
211  sampler.sumAll(&val_,&var,1);
212  var *= -coeff_/(one-prob_);
213  var += coeff_;
214  gstat[0] = var;
215  sampler.sumAll(*g_,g);
216  }
217 
219  std::vector<Real> &hvstat,
220  const Vector<Real> &v,
221  const std::vector<Real> &vstat,
222  const Vector<Real> &x,
223  const std::vector<Real> &xstat,
224  SampleGenerator<Real> &sampler) {
225  Real var(0), one(1);
226  sampler.sumAll(&val_,&var,1);
227  var *= coeff_/(one-prob_);
228  hvstat[0] = var;
229  sampler.sumAll(*hv_,hv);
230  }
231 };
232 
233 }
234 
235 #endif
Provides the interface to evaluate objective functions.
void computeHessVec(Vector< Real > &hv, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Ptr< Vector< Real > > g_
Real computeValue(Objective< Real > &obj, const Vector< Real > &x, Real &tol)
void getHessVec(Vector< Real > &hv, std::vector< Real > &hvstat, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure Hessian-times-a-vector.
Definition: ROL_CVaR.hpp:218
void getGradient(Vector< Real > &g, std::vector< Real > &gstat, const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure (sub)gradient.
Definition: ROL_CVaR.hpp:205
CVaR(ROL::ParameterList &parlist)
Constructor.
Definition: ROL_CVaR.hpp:134
Ptr< PlusFunction< Real > > plusFunction_
Definition: ROL_CVaR.hpp:80
Ptr< Vector< Real > > hv_
Provides an interface for a convex combination of the expected value and the conditional value-at-ris...
Definition: ROL_CVaR.hpp:78
Real getValue(const Vector< Real > &x, const std::vector< Real > &xstat, SampleGenerator< Real > &sampler)
Return risk measure value.
Definition: ROL_CVaR.hpp:196
Ptr< Vector< Real > > dualVector_
Defines the linear algebra or vector space interface.
Definition: ROL_Vector.hpp:80
void sumAll(Real *input, Real *output, int dim) const
Objective_SerialSimOpt(const Ptr< Obj > &obj, const V &ui) z0_ zero()
void updateValue(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal storage for value computation.
Definition: ROL_CVaR.hpp:147
void updateGradient(Objective< Real > &obj, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for gradient computation.
Definition: ROL_CVaR.hpp:157
Real coeff_
Definition: ROL_CVaR.hpp:82
Real prob_
Definition: ROL_CVaR.hpp:81
void checkInputs(void) const
Definition: ROL_CVaR.hpp:98
void computeGradient(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &x, Real &tol)
Real computeGradVec(Vector< Real > &g, Objective< Real > &obj, const Vector< Real > &v, const Vector< Real > &x, Real &tol)
Provides the interface to implement any functional that maps a random variable to a (extended) real n...
CVaR(const Real prob, const Real coeff, const Ptr< PlusFunction< Real > > &pf)
Constructor.
Definition: ROL_CVaR.hpp:118
void updateHessVec(Objective< Real > &obj, const Vector< Real > &v, const std::vector< Real > &vstat, const Vector< Real > &x, const std::vector< Real > &xstat, Real &tol)
Update internal risk measure storage for Hessian-time-a-vector computation.
Definition: ROL_CVaR.hpp:172