MueLu  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MueLu_AggregationPhase2aAlgorithm_decl.hpp
Go to the documentation of this file.
1 // @HEADER
2 //
3 // ***********************************************************************
4 //
5 // MueLu: A package for multigrid based preconditioning
6 // Copyright 2012 Sandia Corporation
7 //
8 // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
9 // the U.S. Government retains certain rights in this software.
10 //
11 // Redistribution and use in source and binary forms, with or without
12 // modification, are permitted provided that the following conditions are
13 // met:
14 //
15 // 1. Redistributions of source code must retain the above copyright
16 // notice, this list of conditions and the following disclaimer.
17 //
18 // 2. Redistributions in binary form must reproduce the above copyright
19 // notice, this list of conditions and the following disclaimer in the
20 // documentation and/or other materials provided with the distribution.
21 //
22 // 3. Neither the name of the Corporation nor the names of the
23 // contributors may be used to endorse or promote products derived from
24 // this software without specific prior written permission.
25 //
26 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 //
38 // Questions? Contact
39 // Jonathan Hu (jhu@sandia.gov)
40 // Andrey Prokopenko (aprokop@sandia.gov)
41 // Ray Tuminaro (rstumin@sandia.gov)
42 //
43 // ***********************************************************************
44 //
45 // @HEADER
46 #ifndef MUELU_AGGREGATIONPHASE2AALGORITHM_DECL_HPP_
47 #define MUELU_AGGREGATIONPHASE2AALGORITHM_DECL_HPP_
48 
49 #include "MueLu_ConfigDefs.hpp"
51 
53 
55 #include "MueLu_Aggregates_fwd.hpp"
56 #include "MueLu_GraphBase.hpp"
57 
58 namespace MueLu {
81  template<class LocalOrdinal = DefaultLocalOrdinal,
83  class Node = DefaultNode>
85  public MueLu::AggregationAlgorithmBase<LocalOrdinal,GlobalOrdinal,Node> {
86 #undef MUELU_AGGREGATIONPHASE2AALGORITHM_SHORT
88 
89  public:
91 
92 
94  AggregationPhase2aAlgorithm(const RCP<const FactoryBase>& /* graphFact */ = Teuchos::null) { }
95 
98 
100 
101 
103 
104 
107  void BuildAggregates(const ParameterList& params, const GraphBase& graph, Aggregates& aggregates, std::vector<unsigned>& aggStat, LO& numNonAggregatedNodes) const;
109 
110  std::string description() const { return "Phase 2a (secondary)"; }
111  };
112 
113 } //namespace MueLu
114 
115 #define MUELU_AGGREGATIONPHASE2AALGORITHM_SHORT
116 
117 
118 #endif /* MUELU_AGGREGATIONPHASE2AALGORITHM_DECL_HPP_ */
MueLu::DefaultLocalOrdinal LocalOrdinal
KokkosClassic::DefaultNode::DefaultNodeType DefaultNode
Container class for aggregation information.
Pure virtual base class for all MueLu aggregation algorithms.
MueLu::DefaultNode Node
MueLu::DefaultGlobalOrdinal GlobalOrdinal
void BuildAggregates(const ParameterList &params, const GraphBase &graph, Aggregates &aggregates, std::vector< unsigned > &aggStat, LO &numNonAggregatedNodes) const
Local aggregation.
AggregationPhase2aAlgorithm(const RCP< const FactoryBase > &=Teuchos::null)
Constructor.
std::string description() const
Return a simple one-line description of this object.
MueLu representation of a graph.
Among unaggregated points, see if we can make a reasonable size aggregate out of it.IdeaAmong unaggregated points, see if we can make a reasonable size aggregate out of it. We do this by looking at neighbors and seeing how many are unaggregated and on my processor. Loosely, base the number of new aggregates created on the percentage of unaggregated nodes.