Intrepid
Intrepid_HDIV_TET_In_FEMDef.hpp
1 // @HEADER
2 // ************************************************************************
3 //
4 // Intrepid Package
5 // Copyright (2007) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Pavel Bochev (pbboche@sandia.gov)
38 // Denis Ridzal (dridzal@sandia.gov), or
39 // Kara Peterson (kjpeter@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
50 namespace Intrepid {
51 
52  template<class Scalar, class ArrayScalar>
54  const EPointType pointType ):
55  Phis_( n ),
56  coeffs_( (n+1)*(n+2)*(n+3)/2 , n*(n+1)*(n+3)/2 )
57  {
58  const int N = n*(n+1)*(n+3)/2;
59  this -> basisCardinality_ = N;
60  this -> basisDegree_ = n;
61  this -> basisCellTopology_
62  = shards::CellTopology(shards::getCellTopologyData<shards::Tetrahedron<4> >() );
63  this -> basisType_ = BASIS_FEM_FIAT;
64  this -> basisCoordinates_ = COORDINATES_CARTESIAN;
65  this -> basisTagsAreSet_ = false;
66 
67 
68  const int littleN = n*(n+1)*(n+2)/2; // dim of (P_{n-1})^3 -- smaller space
69  const int bigN = (n+1)*(n+2)*(n+3)/2; // dim of (P_{n})^2 -- larger space
70  const int start_PkH = (n-1)*n*(n+1)/6; // dim of P({n-2}), offset into
71  const int dim_PkH = n*(n+1)*(n+2)/6 - start_PkH;
72  const int scalarLittleN = littleN/3;
73  const int scalarBigN = bigN/3;
74 
75  // first, need to project the basis for RT space onto the
76  // orthogonal basis of degree n
77  // get coefficients of PkHx
78 
79  Teuchos::SerialDenseMatrix<int,Scalar> V1(bigN, N);
80 
81  // basis for the space is
82  // { (phi_i,0,0) }_{i=0}^{scalarLittleN-1} ,
83  // { (0,phi_i,0) }_{i=0}^{scalarLittleN-1} ,
84  // { (0,0,phi_i) }_{i=0}^{scalarLittleN-1} ,
85  // { (x,y) . phi_i}_{i=startPKH}^{scalarLittleN-1}
86  // columns of V1 are expansion of this basis in terms of the orthogonal basis
87  // for P_{n}^3
88 
89 
90  // these two loops get the first three sets of basis functions
91  for (int i=0;i<scalarLittleN;i++) {
92  for (int k=0;k<3;k++) {
93  V1(i+k*scalarBigN,i+k*scalarLittleN) = 1.0;
94  }
95  }
96 
97  // now I need to integrate { (x,y,z) phi } against the big basis
98  // first, get a cubature rule.
100  FieldContainer<Scalar> cubPoints( myCub.getNumPoints() , 3 );
101  FieldContainer<Scalar> cubWeights( myCub.getNumPoints() );
102  myCub.getCubature( cubPoints , cubWeights );
103 
104  // tabulate the scalar orthonormal basis at cubature points
105  FieldContainer<Scalar> phisAtCubPoints( scalarBigN , myCub.getNumPoints() );
106  Phis_.getValues( phisAtCubPoints , cubPoints , OPERATOR_VALUE );
107 
108 
109  // now do the integration
110  for (int i=0;i<dim_PkH;i++) {
111  for (int j=0;j<scalarBigN;j++) { // int (x,y,z) phi_i \cdot (phi_j,0,0)
112  V1(j,littleN+i) = 0.0;
113  for (int d=0;d<3;d++) {
114  for (int k=0;k<myCub.getNumPoints();k++) {
115  V1(j+d*scalarBigN,littleN+i) +=
116  cubWeights(k) * cubPoints(k,d)
117  * phisAtCubPoints(start_PkH+i,k)
118  * phisAtCubPoints(j,k);
119  }
120  }
121  }
122  }
123 
124 
125  // next, apply the RT nodes (rows) to the basis for (P_n)^3 (columns)
126  Teuchos::SerialDenseMatrix<int,Scalar> V2(N , bigN);
127 
128  shards::CellTopology faceTop(shards::getCellTopologyData<shards::Triangle<3> >() );
129  const int numPtsPerFace = PointTools::getLatticeSize( faceTop ,
130  n+2 ,
131  1 );
132 
133  FieldContainer<Scalar> twoDPts( numPtsPerFace , 2 );
134  PointTools::getLattice<Scalar,FieldContainer<Scalar> >( twoDPts ,
135  faceTop ,
136  n+2 ,
137  1 ,
138  pointType );
139 
140  // holds the image of the triangle points on each face.
141  FieldContainer<Scalar> facePts( numPtsPerFace , 3 );
142  FieldContainer<Scalar> phisAtFacePoints( scalarBigN ,
143  numPtsPerFace );
144 
145 
146 
147  // these are scaled by the appropriate face areas.
148  // area of faces 0,2,3 are 0.5
149  // area of face 1 is sqrt(3)/2
150 
151  Scalar normal[][4] = { {0.0,0.5,-0.5,0.0},
152  {-0.5,0.5,0.0,0.0},
153  {0.0,0.5,0.0,-0.5} };
154 
155  for (int i=0;i<4;i++) { // loop over faces
157  twoDPts ,
158  2 ,
159  i ,
160  this->basisCellTopology_ );
161 
162  Phis_.getValues( phisAtFacePoints , facePts , OPERATOR_VALUE );
163 
164  // loop over points (rows of V2)
165  for (int j=0;j<numPtsPerFace;j++) {
166  // loop over orthonormal basis functions (columns of V2)
167  for (int k=0;k<scalarBigN;k++) {
168  for (int l=0;l<3;l++) {
169  V2(numPtsPerFace*i+j,k+l*scalarBigN) = normal[l][i] * phisAtFacePoints(k,j);
170  }
171  }
172  }
173  }
174 
175  // remaining nodes point values of each vector component on interior
176  // points of a lattice of degree+2
177  // This way, RT0 --> degree = 1 and internal lattice has no points
178  // RT1 --> degree = 2, and internal lattice has one point (inside of quartic)
179  if (n > 1) {
180  const int numInternalPoints = PointTools::getLatticeSize( this->getBaseCellTopology() ,
181  n + 2 ,
182  1 );
183 
184  FieldContainer<Scalar> internalPoints( numInternalPoints , 3 );
185  PointTools::getLattice<Scalar,FieldContainer<Scalar> >( internalPoints ,
186  this->getBaseCellTopology() ,
187  n + 2 ,
188  1 ,
189  pointType );
190 
191  FieldContainer<Scalar> phisAtInternalPoints( scalarBigN , numInternalPoints );
192  Phis_.getValues( phisAtInternalPoints , internalPoints , OPERATOR_VALUE );
193 
194  // copy values into right positions of V2
195  for (int i=0;i<numInternalPoints;i++) {
196  for (int j=0;j<scalarBigN;j++) {
197  for (int k=0;k<3;k++) {
198  V2(4*numPtsPerFace+k*numInternalPoints+i,k*scalarBigN+j) = phisAtInternalPoints(j,i);
199  }
200  }
201  }
202  }
203 
204  Teuchos::SerialDenseMatrix<int,Scalar> Vsdm( N , N );
205 
206  // multiply V2 * V1 --> V
207  Vsdm.multiply( Teuchos::NO_TRANS , Teuchos::NO_TRANS , 1.0 , V2 , V1 , 0.0 );
208 
209  // std::cout << "Vandermonde:\n";
210  // std::cout << Vsdm << "\n";
211  // std::cout << "End Vandermonde\n";
212 
213  Teuchos::SerialDenseSolver<int,Scalar> solver;
214  solver.setMatrix( rcp( &Vsdm , false ) );
215  solver.invert( );
216 
217 
218  Teuchos::SerialDenseMatrix<int,Scalar> Csdm( bigN , N );
219  Csdm.multiply( Teuchos::NO_TRANS , Teuchos::NO_TRANS , 1.0 , V1 , Vsdm , 0.0 );
220 
221  //std::cout << Csdm << "\n";
222 
223  for (int i=0;i<bigN;i++) {
224  for (int j=0;j<N;j++) {
225  coeffs_(i,j) = Csdm(i,j);
226  }
227  }
228  }
229 
230  template<class Scalar, class ArrayScalar>
232 
233  // Basis-dependent initializations
234  int tagSize = 4; // size of DoF tag, i.e., number of fields in the tag
235  int posScDim = 0; // position in the tag, counting from 0, of the subcell dim
236  int posScOrd = 1; // position in the tag, counting from 0, of the subcell ordinal
237  int posDfOrd = 2; // position in the tag, counting from 0, of DoF ordinal relative to the subcell
238 
239  // An array with local DoF tags assigned to the basis functions, in the order of their local enumeration
240 
241  int *tags = new int[ tagSize * this->getCardinality() ];
242  int *tag_cur = tags;
243  const int deg = this->getDegree();
244 
245  const int numPtsPerFace = deg*(deg+1)/2;
246 
247  // there are degree internal dofs on each edge -- normals. Let's do them
248  for (int f=0;f<4;f++) {
249  for (int i=0;i<numPtsPerFace;i++) {
250  tag_cur[0] = 2; tag_cur[1] = f; tag_cur[2] = i; tag_cur[3] = numPtsPerFace;
251  tag_cur += tagSize;
252  }
253  }
254  // end face dofs
255 
256  // the rest of the dofs are internal
257  const int numInternalDof = this->getCardinality() - 4 * numPtsPerFace;
258  int internalDofCur=0;
259  for (int i=4*numPtsPerFace;i<this->getCardinality();i++) {
260  tag_cur[0] = 3; tag_cur[1] = 0; tag_cur[2] = internalDofCur; tag_cur[3] = numInternalDof;
261  tag_cur += tagSize;
262  internalDofCur++;
263  }
264 
265 
266  Intrepid::setOrdinalTagData(this -> tagToOrdinal_,
267  this -> ordinalToTag_,
268  tags,
269  this -> basisCardinality_,
270  tagSize,
271  posScDim,
272  posScOrd,
273  posDfOrd);
274 
275  delete []tags;
276 
277  }
278 
279 
280 
281  template<class Scalar, class ArrayScalar>
283  const ArrayScalar & inputPoints,
284  const EOperator operatorType) const {
285 
286  // Verify arguments
287 #ifdef HAVE_INTREPID_DEBUG
288  Intrepid::getValues_HDIV_Args<Scalar, ArrayScalar>(outputValues,
289  inputPoints,
290  operatorType,
291  this -> getBaseCellTopology(),
292  this -> getCardinality() );
293 #endif
294  const int numPts = inputPoints.dimension(0);
295  const int deg = this -> getDegree();
296  const int scalarBigN = (deg+1)*(deg+2)*(deg+3)/6;
297 
298  try {
299  switch (operatorType) {
300  case OPERATOR_VALUE:
301  {
302  FieldContainer<Scalar> phisCur( scalarBigN , numPts );
303  Phis_.getValues( phisCur , inputPoints , OPERATOR_VALUE );
304 
305  for (int i=0;i<outputValues.dimension(0);i++) { // RT bf
306  for (int j=0;j<outputValues.dimension(1);j++) { // point
307  for (int l=0;l<3;l++) {
308  outputValues(i,j,l) = 0.0;
309  }
310  for (int k=0;k<scalarBigN;k++) { // Dubiner bf
311  for (int l=0;l<3;l++) { // vector components
312  outputValues(i,j,l) += coeffs_(k+l*scalarBigN,i) * phisCur(k,j);
313  }
314  }
315  }
316  }
317  }
318  break;
319  case OPERATOR_DIV:
320  {
321  FieldContainer<Scalar> phisCur( scalarBigN , numPts , 3 );
322  Phis_.getValues( phisCur , inputPoints , OPERATOR_GRAD );
323  for (int i=0;i<outputValues.dimension(0);i++) { // bf loop
324  for (int j=0;j<outputValues.dimension(1);j++) { // point loop
325  outputValues(i,j) = 0.0;
326  for (int k=0;k<scalarBigN;k++) {
327  outputValues(i,j) += coeffs_(k,i) * phisCur(k,j,0);
328  outputValues(i,j) += coeffs_(k+scalarBigN,i) * phisCur(k,j,1);
329  outputValues(i,j) += coeffs_(k+2*scalarBigN,i) * phisCur(k,j,2);
330  }
331  }
332  }
333  }
334  break;
335  default:
336  TEUCHOS_TEST_FOR_EXCEPTION( true , std::invalid_argument,
337  ">>> ERROR (Basis_HDIV_TET_In_FEM): Operator type not implemented");
338  break;
339  }
340  }
341  catch (std::invalid_argument &exception){
342  TEUCHOS_TEST_FOR_EXCEPTION( true , std::invalid_argument,
343  ">>> ERROR (Basis_HDIV_TET_In_FEM): Operator type not implemented");
344  }
345 
346  }
347 
348 
349 
350  template<class Scalar, class ArrayScalar>
352  const ArrayScalar & inputPoints,
353  const ArrayScalar & cellVertices,
354  const EOperator operatorType) const {
355  TEUCHOS_TEST_FOR_EXCEPTION( (true), std::logic_error,
356  ">>> ERROR (Basis_HDIV_TET_In_FEM): FEM Basis calling an FVD member function");
357  }
358 
359 
360 }// namespace Intrepid
static void mapToReferenceSubcell(ArraySubcellPoint &refSubcellPoints, const ArrayParamPoint &paramPoints, const int subcellDim, const int subcellOrd, const shards::CellTopology &parentCell)
Computes parameterization maps of 1- and 2-subcells of reference cells.
virtual void initializeTags()
Initializes tagToOrdinal_ and ordinalToTag_ lookup arrays.
FieldContainer< Scalar > coeffs_
expansion coefficients of the nodal basis in terms of the orthgonal one
virtual void getCubature(ArrayPoint &cubPoints, ArrayWeight &cubWeights) const
Returns cubature points and weights (return arrays must be pre-sized/pre-allocated).
EBasis basisType_
Type of the basis.
Defines direct integration rules on a tetrahedron.
bool basisTagsAreSet_
&quot;true&quot; if tagToOrdinal_ and ordinalToTag_ have been initialized
virtual int getNumPoints() const
Returns the number of cubature points.
ECoordinates basisCoordinates_
The coordinate system for which the basis is defined.
void getValues(ArrayScalar &outputValues, const ArrayScalar &inputPoints, const EOperator operatorType) const
Evaluation of a FEM basis on a reference Tetrahedron cell.
Basis_HDIV_TET_In_FEM(const int n, const EPointType pointType)
Constructor.
shards::CellTopology basisCellTopology_
Base topology of the cells for which the basis is defined. See the Shards package http://trilinos...
Basis_HGRAD_TET_Cn_FEM_ORTH< Scalar, FieldContainer< Scalar > > Phis_
Orthogonal basis out of which the nodal basis is constructed.
virtual const shards::CellTopology getBaseCellTopology() const
Returns the base cell topology for which the basis is defined. See Shards documentation http://trilin...
int basisDegree_
Degree of the largest complete polynomial space that can be represented by the basis.
int basisCardinality_
Cardinality of the basis, i.e., the number of basis functions/degrees-of-freedom. ...
static int getLatticeSize(const shards::CellTopology &cellType, const int order, const int offset=0)
Computes the number of points in a lattice of a given order on a simplex (currently disabled for othe...