1 #ifndef _CREATE_CONSTRAINTS_
2 #define _CREATE_CONSTRAINTS_
14 PsqrtW(num_neighbors, PsqrtW.extent(1)-1) = 1.0;
17 for (
int i=0; i<dimension; ++i) {
18 M(M.extent(0)-1, i+1) = (1.0/cutoff_p)*(*T)(dimension-1,i);
19 M(i+1, M.extent(0)-1) = (1.0/cutoff_p)*(*T)(dimension-1,i);
23 for (
int i=0; i<dimension; ++i) {
24 PsqrtW(num_neighbors, PsqrtW.extent(1) - 1 - i) = 1.0;
28 for (
int i=0; i<dimension; ++i) {
29 for (
int j=0; j<dimension; ++j) {
30 M(i*NP, M.extent(0) - 1 - j) = (*T)(dimension-1,i);
31 M(M.extent(0) - 1 - j, i*NP) = (*T)(dimension-1,i);
Neumann Gradient Scalar Type.
Scalar polynomial basis centered at the target site and scaled by sum of basis powers e...
Scalar basis reused as many times as there are components in the vector resulting in a much cheaper p...
ReconstructionSpace
Space in which to reconstruct polynomial.
Kokkos::View< double **, layout_right, Kokkos::MemoryTraits< Kokkos::Unmanaged > > scratch_matrix_right_type
KOKKOS_INLINE_FUNCTION void evaluateConstraints(scratch_matrix_right_type M, scratch_matrix_right_type PsqrtW, const ConstraintType constraint_type, const ReconstructionSpace reconstruction_space, const int NP, const double cutoff_p, const int dimension, const int num_neighbors=0, scratch_matrix_right_type *T=NULL)
Vector polynomial basis having # of components _dimensions, or (_dimensions-1) in the case of manifol...
ConstraintType
Constraint type.