Anasazi
Version of the Day
|
An implementation of the Anasazi::GenOrthoManager that performs orthogonalization using iterated classical Gram-Schmidt. More...
#include <AnasaziICGSOrthoManager.hpp>
Public Member Functions | |
Constructor/Destructor | |
ICGSOrthoManager (Teuchos::RCP< const OP > Op=Teuchos::null, int numIters=2, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType eps=0.0, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType tol=0.20) | |
Constructor specifying the operator defining the inner product as well as the number of orthogonalization iterations. More... | |
~ICGSOrthoManager () | |
Destructor. More... | |
Methods implementing Anasazi::GenOrthoManager | |
void | projectGen (MV &S, Teuchos::Array< Teuchos::RCP< const MV > > X, Teuchos::Array< Teuchos::RCP< const MV > > Y, bool isBiOrtho, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< MV > MS=Teuchos::null, Teuchos::Array< Teuchos::RCP< const MV > > MX=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null)), Teuchos::Array< Teuchos::RCP< const MV > > MY=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null))) const |
Applies a series of generic projectors. More... | |
int | projectAndNormalizeGen (MV &S, Teuchos::Array< Teuchos::RCP< const MV > > X, Teuchos::Array< Teuchos::RCP< const MV > > Y, bool isBiOrtho, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null, Teuchos::RCP< MV > MS=Teuchos::null, Teuchos::Array< Teuchos::RCP< const MV > > MX=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null)), Teuchos::Array< Teuchos::RCP< const MV > > MY=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null))) const |
Applies a series of generic projectors and returns an orthonormal basis for the residual data. More... | |
Methods implementing Anasazi::MatOrthoManager | |
void | projectMat (MV &X, Teuchos::Array< Teuchos::RCP< const MV > > Q, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< MV > MX=Teuchos::null, Teuchos::Array< Teuchos::RCP< const MV > > MQ=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null))) const |
Given a list of mutually orthogonal and internally orthonormal bases Q , this method projects a multivector X onto the space orthogonal to the individual Q[i] , optionally returning the coefficients of X for the individual Q[i] . All of this is done with respect to the inner product innerProd(). More... | |
int | normalizeMat (MV &X, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null, Teuchos::RCP< MV > MX=Teuchos::null) const |
This method takes a multivector X and attempts to compute an orthonormal basis for , with respect to innerProd(). More... | |
int | projectAndNormalizeMat (MV &X, Teuchos::Array< Teuchos::RCP< const MV > > Q, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null, Teuchos::RCP< MV > MX=Teuchos::null, Teuchos::Array< Teuchos::RCP< const MV > > MQ=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null))) const |
Given a set of bases Q[i] and a multivector X , this method computes an orthonormal basis for . More... | |
Error methods | |
Teuchos::ScalarTraits < ScalarType >::magnitudeType | orthonormErrorMat (const MV &X, Teuchos::RCP< const MV > MX=Teuchos::null) const |
This method computes the error in orthonormality of a multivector, measured as the Frobenius norm of the difference innerProd(X,Y) - I . The method has the option of exploiting a caller-provided MX . More... | |
Teuchos::ScalarTraits < ScalarType >::magnitudeType | orthogErrorMat (const MV &X1, const MV &X2, Teuchos::RCP< const MV > MX1, Teuchos::RCP< const MV > MX2) const |
This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y) . The method has the option of exploiting a caller-provided MX . More... | |
Accessor routines | |
void | setNumIters (int numIters) |
Set parameter for re-orthogonalization threshold. More... | |
int | getNumIters () const |
Return parameter for re-orthogonalization threshold. More... | |
Public Member Functions inherited from Anasazi::GenOrthoManager< ScalarType, MV, OP > | |
GenOrthoManager (Teuchos::RCP< const OP > Op=Teuchos::null) | |
Default constructor. More... | |
virtual | ~GenOrthoManager () |
Destructor. More... | |
Public Member Functions inherited from Anasazi::MatOrthoManager< ScalarType, MV, OP > | |
MatOrthoManager (Teuchos::RCP< const OP > Op=Teuchos::null) | |
Default constructor. More... | |
virtual | ~MatOrthoManager () |
Destructor. More... | |
virtual void | setOp (Teuchos::RCP< const OP > Op) |
Set operator used for inner product. More... | |
virtual Teuchos::RCP< const OP > | getOp () const |
Get operator used for inner product. More... | |
int | getOpCounter () const |
Retrieve operator counter. More... | |
void | resetOpCounter () |
Reset the operator counter to zero. More... | |
void | innerProdMat (const MV &X, const MV &Y, Teuchos::SerialDenseMatrix< int, ScalarType > &Z, Teuchos::RCP< const MV > MX=Teuchos::null, Teuchos::RCP< const MV > MY=Teuchos::null) const |
Provides a matrix-based inner product. More... | |
void | normMat (const MV &X, std::vector< typename Teuchos::ScalarTraits< ScalarType >::magnitudeType > &normvec, Teuchos::RCP< const MV > MX=Teuchos::null) const |
Provides the norm induced by the matrix-based inner product. More... | |
void | innerProd (const MV &X, const MV &Y, Teuchos::SerialDenseMatrix< int, ScalarType > &Z) const |
Implements the interface OrthoManager::innerProd(). More... | |
void | norm (const MV &X, std::vector< typename Teuchos::ScalarTraits< ScalarType >::magnitudeType > &normvec) const |
Implements the interface OrthoManager::norm(). More... | |
void | project (MV &X, Teuchos::Array< Teuchos::RCP< const MV > > Q, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null))) const |
Implements the interface OrthoManager::project(). More... | |
int | normalize (MV &X, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null) const |
Implements the interface OrthoManager::normalize(). More... | |
int | projectAndNormalize (MV &X, Teuchos::Array< Teuchos::RCP< const MV > > Q, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null) const |
Implements the interface OrthoManager::projectAndNormalize(). More... | |
Teuchos::ScalarTraits < ScalarType >::magnitudeType | orthonormError (const MV &X) const |
Implements the interface OrthoManager::orthonormError(). More... | |
Teuchos::ScalarTraits < ScalarType >::magnitudeType | orthogError (const MV &X1, const MV &X2) const |
Implements the interface OrthoManager::orthogError(). More... | |
Public Member Functions inherited from Anasazi::OrthoManager< ScalarType, MV > | |
OrthoManager () | |
Default constructor. More... | |
virtual | ~OrthoManager () |
Destructor. More... | |
An implementation of the Anasazi::GenOrthoManager that performs orthogonalization using iterated classical Gram-Schmidt.
Definition at line 71 of file AnasaziICGSOrthoManager.hpp.
Anasazi::ICGSOrthoManager< ScalarType, MV, OP >::ICGSOrthoManager | ( | Teuchos::RCP< const OP > | Op = Teuchos::null , |
int | numIters = 2 , |
||
typename Teuchos::ScalarTraits< ScalarType >::magnitudeType | eps = 0.0 , |
||
typename Teuchos::ScalarTraits< ScalarType >::magnitudeType | tol = 0.20 |
||
) |
Constructor specifying the operator defining the inner product as well as the number of orthogonalization iterations.
Definition at line 411 of file AnasaziICGSOrthoManager.hpp.
|
inline |
Destructor.
Definition at line 90 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
Applies a series of generic projectors.
Given a list of bases X[i]
and Y[i]
(a projection pair), this method takes a multivector S
and applies the projectors
This operation projects S
onto the space orthogonal to the Y[i]
, along the range of the X[i]
. The inner product specified by is given by innerProd().
The method also returns the coefficients C[i]
associated with each projection pair, so that
and therefore
Lastly, for reasons of efficiency, the user must specify whether the projection pairs are bi-orthonormal with respect to innerProd(), i.e., whether . In the case that the bases are specified to be biorthogonal, the inverse will not be computed. Furthermore, the user may optionally specifiy the image of S
and the projection pairs under the inner product operator getOp().
projectGen() is implemented to apply the projectors via an iterated Classical Gram-Schmidt, where the iteration is performed getNumIters() number of times.
S | [in/out] The multivector to be modified. On output, the columns of S will be orthogonal to each Y[i] , satisfying Also,
|
X | [in] Multivectors for bases under which is modified. |
Y | [in] Multivectors for bases to which should be orthogonal. |
isBiortho | [in] A flag specifying whether the bases X[i] and Y[i] are biorthonormal, i.e,. whether . |
C | [out] Coefficients for reconstructing via the bases X[i] . If C[i] is a non-null pointer and C[i] matches the dimensions of S and X[i] , then the coefficients computed during the orthogonalization routine will be stored in the matrix C[i] .If C[i] points to a Teuchos::SerialDenseMatrix with size inconsistent with S and , then a std::invalid_argument exception will be thrown.Otherwise, if C.size() < i or C[i] is a null pointer, the caller will not have access to the computed coefficients C[i] . |
MS | [in/out] If specified by the user, on input MS is required to be the image of S under the operator getOp(). On output, MS will be updated to reflect the changes in S . |
MX | [in] If specified by the user, on MX[i] is required to be the image of X[i] under the operator getOp(). |
MY | [in] If specified by the user, on MY[i] is required to be the image of Y[i] under the operator getOp(). |
X[i] != Teuchos::null
or Y[i] != Teuchos::null
, then X[i]
and Y[i]
are required to have the same number of columns, and each should have the same number of rows as S
. i != j
, . biOrtho == true
, biOrtho == false
, then should be Hermitian positive-definite. X[i]
and Y[i]
have columns and S
has columns, then C[i]
if specified must be . Implements Anasazi::GenOrthoManager< ScalarType, MV, OP >.
Definition at line 547 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
Applies a series of generic projectors and returns an orthonormal basis for the residual data.
Given a list of bases X[i]
and Y[i]
(a projection pair), this method takes a multivector S
and applies the projectors
These operation project S
onto the space orthogonal to the range of the Y[i]
, along the range of X
[i]. The inner product specified by is given by innerProd().
The method returns in S
an orthonormal basis for the residual
where B
contains the (not necessarily triangular) coefficients of the residual with respect to the new basis.
The method also returns the coefficients C[i]
and B
associated with each projection pair, so that
and
Lastly, for reasons of efficiency, the user must specify whether the projection pairs are bi-orthonormal with respect to innerProd(), i.e., whether . Furthermore, the user may optionally specifiy the image of S
and the projection pairs under the inner product operator getOp().
S | [in/out] The multivector to be modified. On output, the columns of S will be orthogonal to each Y[i] , satisfying Also, where m is the number of rows in S , n is the number of columns in S , and rank is the value returned from the method. |
X | [in] Multivectors for bases under which is modified. |
Y | [in] Multivectors for bases to which should be orthogonal. |
isBiortho | [in] A flag specifying whether the bases X[i] and Y[i] are biorthonormal, i.e,. whether . |
C | [out] Coefficients for reconstructing via the bases X[i] . If C[i] is a non-null pointer and C[i] matches the dimensions of X and Q[i] , then the coefficients computed during the orthogonalization routine will be stored in the matrix C[i] .If C[i] points to a Teuchos::SerialDenseMatrix with size inconsistent with S and , then a std::invalid_argument exception will be thrown.Otherwise, if C.size() < i or C[i] is a null pointer, the caller will not have access to the computed coefficients C[i] . |
B | [out] The coefficients of the original S with respect to the computed basis. If B is a non-null pointer and B matches the dimensions of B , then the coefficients computed during the orthogonalization routine will be stored in B , similar to calling innerProd( Sout, Sin, B );
B points to a Teuchos::SerialDenseMatrix with size inconsistent with S , then a std::invalid_argument exception will be thrown.Otherwise, if B is null, the caller will not have access to the computed coefficients.The normalization uses classical Gram-Schmidt iteration, so that B is an upper triangular matrix with positive diagonal elements. |
MS | [in/out] If specified by the user, on input MS is required to be the image of S under the operator getOp(). On output, MS will be updated to reflect the changes in S . |
MX | [in] If specified by the user, on MX[i] is required to be the image of X[i] under the operator getOp(). |
MY | [in] If specified by the user, on MY[i] is required to be the image of Y[i] under the operator getOp(). |
X[i] != Teuchos::null
or Y[i] != Teuchos::null
, then X[i]
and Y[i]
are required to have the same number of columns, and each should have the same number of rows as S
. i != j
, . biOrtho == true
, biOrtho == false
, then should be Hermitian positive-definite. X[i]
and Y[i]
have columns and S
has columns, then C[i]
if specified must be . S
has columns, then B
if specified must be . Implements Anasazi::GenOrthoManager< ScalarType, MV, OP >.
Definition at line 892 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
Given a list of mutually orthogonal and internally orthonormal bases Q
, this method projects a multivector X
onto the space orthogonal to the individual Q[i]
, optionally returning the coefficients of X
for the individual Q[i]
. All of this is done with respect to the inner product innerProd().
This method calls projectGen() as follows:
See projectGen() for argument requirements.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 466 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
This method takes a multivector X
and attempts to compute an orthonormal basis for , with respect to innerProd().
This method calls projectAndNormalizeGen() as follows:
See projectAndNormalizeGen() for argument requirements.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 482 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
Given a set of bases Q[i]
and a multivector X
, this method computes an orthonormal basis for .
This method calls projectAndNormalizeGen() as follows:
See projectAndNormalizeGen() for argument requirements.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 531 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
This method computes the error in orthonormality of a multivector, measured as the Frobenius norm of the difference innerProd(X,Y) - I
. The method has the option of exploiting a caller-provided MX
.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 437 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y)
. The method has the option of exploiting a caller-provided MX
.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 454 of file AnasaziICGSOrthoManager.hpp.
|
inline |
Set parameter for re-orthogonalization threshold.
Definition at line 382 of file AnasaziICGSOrthoManager.hpp.
|
inline |
Return parameter for re-orthogonalization threshold.
Definition at line 389 of file AnasaziICGSOrthoManager.hpp.