|
Anasazi
Version of the Day
|
An implementation of the Anasazi::GenOrthoManager that performs orthogonalization using iterated classical Gram-Schmidt. More...
#include <AnasaziICGSOrthoManager.hpp>
Public Member Functions | |
Constructor/Destructor | |
| ICGSOrthoManager (Teuchos::RCP< const OP > Op=Teuchos::null, int numIters=2, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType eps=0.0, typename Teuchos::ScalarTraits< ScalarType >::magnitudeType tol=0.20) | |
| Constructor specifying the operator defining the inner product as well as the number of orthogonalization iterations. More... | |
| ~ICGSOrthoManager () | |
| Destructor. More... | |
Methods implementing Anasazi::GenOrthoManager | |
| void | projectGen (MV &S, Teuchos::Array< Teuchos::RCP< const MV > > X, Teuchos::Array< Teuchos::RCP< const MV > > Y, bool isBiOrtho, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< MV > MS=Teuchos::null, Teuchos::Array< Teuchos::RCP< const MV > > MX=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null)), Teuchos::Array< Teuchos::RCP< const MV > > MY=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null))) const |
| Applies a series of generic projectors. More... | |
| int | projectAndNormalizeGen (MV &S, Teuchos::Array< Teuchos::RCP< const MV > > X, Teuchos::Array< Teuchos::RCP< const MV > > Y, bool isBiOrtho, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null, Teuchos::RCP< MV > MS=Teuchos::null, Teuchos::Array< Teuchos::RCP< const MV > > MX=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null)), Teuchos::Array< Teuchos::RCP< const MV > > MY=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null))) const |
| Applies a series of generic projectors and returns an orthonormal basis for the residual data. More... | |
Methods implementing Anasazi::MatOrthoManager | |
| void | projectMat (MV &X, Teuchos::Array< Teuchos::RCP< const MV > > Q, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< MV > MX=Teuchos::null, Teuchos::Array< Teuchos::RCP< const MV > > MQ=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null))) const |
Given a list of mutually orthogonal and internally orthonormal bases Q, this method projects a multivector X onto the space orthogonal to the individual Q[i], optionally returning the coefficients of X for the individual Q[i]. All of this is done with respect to the inner product innerProd(). More... | |
| int | normalizeMat (MV &X, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null, Teuchos::RCP< MV > MX=Teuchos::null) const |
This method takes a multivector X and attempts to compute an orthonormal basis for , with respect to innerProd(). More... | |
| int | projectAndNormalizeMat (MV &X, Teuchos::Array< Teuchos::RCP< const MV > > Q, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null, Teuchos::RCP< MV > MX=Teuchos::null, Teuchos::Array< Teuchos::RCP< const MV > > MQ=Teuchos::tuple(Teuchos::RCP< const MV >(Teuchos::null))) const |
Given a set of bases Q[i] and a multivector X, this method computes an orthonormal basis for . More... | |
Error methods | |
| Teuchos::ScalarTraits < ScalarType >::magnitudeType | orthonormErrorMat (const MV &X, Teuchos::RCP< const MV > MX=Teuchos::null) const |
This method computes the error in orthonormality of a multivector, measured as the Frobenius norm of the difference innerProd(X,Y) - I. The method has the option of exploiting a caller-provided MX. More... | |
| Teuchos::ScalarTraits < ScalarType >::magnitudeType | orthogErrorMat (const MV &X1, const MV &X2, Teuchos::RCP< const MV > MX1, Teuchos::RCP< const MV > MX2) const |
This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y). The method has the option of exploiting a caller-provided MX. More... | |
Accessor routines | |
| void | setNumIters (int numIters) |
| Set parameter for re-orthogonalization threshold. More... | |
| int | getNumIters () const |
| Return parameter for re-orthogonalization threshold. More... | |
Public Member Functions inherited from Anasazi::GenOrthoManager< ScalarType, MV, OP > | |
| GenOrthoManager (Teuchos::RCP< const OP > Op=Teuchos::null) | |
| Default constructor. More... | |
| virtual | ~GenOrthoManager () |
| Destructor. More... | |
Public Member Functions inherited from Anasazi::MatOrthoManager< ScalarType, MV, OP > | |
| MatOrthoManager (Teuchos::RCP< const OP > Op=Teuchos::null) | |
| Default constructor. More... | |
| virtual | ~MatOrthoManager () |
| Destructor. More... | |
| virtual void | setOp (Teuchos::RCP< const OP > Op) |
| Set operator used for inner product. More... | |
| virtual Teuchos::RCP< const OP > | getOp () const |
| Get operator used for inner product. More... | |
| int | getOpCounter () const |
| Retrieve operator counter. More... | |
| void | resetOpCounter () |
| Reset the operator counter to zero. More... | |
| void | innerProdMat (const MV &X, const MV &Y, Teuchos::SerialDenseMatrix< int, ScalarType > &Z, Teuchos::RCP< const MV > MX=Teuchos::null, Teuchos::RCP< const MV > MY=Teuchos::null) const |
| Provides a matrix-based inner product. More... | |
| void | normMat (const MV &X, std::vector< typename Teuchos::ScalarTraits< ScalarType >::magnitudeType > &normvec, Teuchos::RCP< const MV > MX=Teuchos::null) const |
| Provides the norm induced by the matrix-based inner product. More... | |
| void | innerProd (const MV &X, const MV &Y, Teuchos::SerialDenseMatrix< int, ScalarType > &Z) const |
| Implements the interface OrthoManager::innerProd(). More... | |
| void | norm (const MV &X, std::vector< typename Teuchos::ScalarTraits< ScalarType >::magnitudeType > &normvec) const |
| Implements the interface OrthoManager::norm(). More... | |
| void | project (MV &X, Teuchos::Array< Teuchos::RCP< const MV > > Q, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null))) const |
| Implements the interface OrthoManager::project(). More... | |
| int | normalize (MV &X, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null) const |
| Implements the interface OrthoManager::normalize(). More... | |
| int | projectAndNormalize (MV &X, Teuchos::Array< Teuchos::RCP< const MV > > Q, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C=Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >(Teuchos::null)), Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B=Teuchos::null) const |
| Implements the interface OrthoManager::projectAndNormalize(). More... | |
| Teuchos::ScalarTraits < ScalarType >::magnitudeType | orthonormError (const MV &X) const |
| Implements the interface OrthoManager::orthonormError(). More... | |
| Teuchos::ScalarTraits < ScalarType >::magnitudeType | orthogError (const MV &X1, const MV &X2) const |
| Implements the interface OrthoManager::orthogError(). More... | |
Public Member Functions inherited from Anasazi::OrthoManager< ScalarType, MV > | |
| OrthoManager () | |
| Default constructor. More... | |
| virtual | ~OrthoManager () |
| Destructor. More... | |
An implementation of the Anasazi::GenOrthoManager that performs orthogonalization using iterated classical Gram-Schmidt.
Definition at line 71 of file AnasaziICGSOrthoManager.hpp.
| Anasazi::ICGSOrthoManager< ScalarType, MV, OP >::ICGSOrthoManager | ( | Teuchos::RCP< const OP > | Op = Teuchos::null, |
| int | numIters = 2, |
||
| typename Teuchos::ScalarTraits< ScalarType >::magnitudeType | eps = 0.0, |
||
| typename Teuchos::ScalarTraits< ScalarType >::magnitudeType | tol = 0.20 |
||
| ) |
Constructor specifying the operator defining the inner product as well as the number of orthogonalization iterations.
Definition at line 411 of file AnasaziICGSOrthoManager.hpp.
|
inline |
Destructor.
Definition at line 90 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
Applies a series of generic projectors.
Given a list of bases X[i] and Y[i] (a projection pair), this method takes a multivector S and applies the projectors
This operation projects S onto the space orthogonal to the Y[i], along the range of the X[i]. The inner product specified by
is given by innerProd().
The method also returns the coefficients C[i] associated with each projection pair, so that
and therefore
Lastly, for reasons of efficiency, the user must specify whether the projection pairs are bi-orthonormal with respect to innerProd(), i.e., whether
. In the case that the bases are specified to be biorthogonal, the inverse
will not be computed. Furthermore, the user may optionally specifiy the image of S and the projection pairs under the inner product operator getOp().
projectGen() is implemented to apply the projectors via an iterated Classical Gram-Schmidt, where the iteration is performed getNumIters() number of times.
| S | [in/out] The multivector to be modified. On output, the columns of S will be orthogonal to each Y[i], satisfying
|
| X | [in] Multivectors for bases under which is modified. |
| Y | [in] Multivectors for bases to which should be orthogonal. |
| isBiortho | [in] A flag specifying whether the bases X[i] and Y[i] are biorthonormal, i.e,. whether . |
| C | [out] Coefficients for reconstructing via the bases X[i]. If C[i] is a non-null pointer and C[i] matches the dimensions of S and X[i], then the coefficients computed during the orthogonalization routine will be stored in the matrix C[i].If C[i] points to a Teuchos::SerialDenseMatrix with size inconsistent with S and , then a std::invalid_argument exception will be thrown.Otherwise, if C.size() < i or C[i] is a null pointer, the caller will not have access to the computed coefficients C[i]. |
| MS | [in/out] If specified by the user, on input MS is required to be the image of S under the operator getOp(). On output, MS will be updated to reflect the changes in S. |
| MX | [in] If specified by the user, on MX[i] is required to be the image of X[i] under the operator getOp(). |
| MY | [in] If specified by the user, on MY[i] is required to be the image of Y[i] under the operator getOp(). |
X[i] != Teuchos::null or Y[i] != Teuchos::null, then X[i] and Y[i] are required to have the same number of columns, and each should have the same number of rows as S. i != j,
. biOrtho == true,
biOrtho == false, then
should be Hermitian positive-definite. X[i] and Y[i] have
columns and S has
columns, then C[i] if specified must be
. Implements Anasazi::GenOrthoManager< ScalarType, MV, OP >.
Definition at line 547 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
Applies a series of generic projectors and returns an orthonormal basis for the residual data.
Given a list of bases X[i] and Y[i] (a projection pair), this method takes a multivector S and applies the projectors
These operation project S onto the space orthogonal to the range of the Y[i], along the range of X[i]. The inner product specified by
is given by innerProd().
The method returns in S an orthonormal basis for the residual
where B contains the (not necessarily triangular) coefficients of the residual with respect to the new basis.
The method also returns the coefficients C[i] and B associated with each projection pair, so that
and
Lastly, for reasons of efficiency, the user must specify whether the projection pairs are bi-orthonormal with respect to innerProd(), i.e., whether
. Furthermore, the user may optionally specifiy the image of S and the projection pairs under the inner product operator getOp().
| S | [in/out] The multivector to be modified. On output, the columns of S will be orthogonal to each Y[i], satisfying
m is the number of rows in S, n is the number of columns in S, and rank is the value returned from the method. |
| X | [in] Multivectors for bases under which is modified. |
| Y | [in] Multivectors for bases to which should be orthogonal. |
| isBiortho | [in] A flag specifying whether the bases X[i] and Y[i] are biorthonormal, i.e,. whether . |
| C | [out] Coefficients for reconstructing via the bases X[i]. If C[i] is a non-null pointer and C[i] matches the dimensions of X and Q[i], then the coefficients computed during the orthogonalization routine will be stored in the matrix C[i].If C[i] points to a Teuchos::SerialDenseMatrix with size inconsistent with S and , then a std::invalid_argument exception will be thrown.Otherwise, if C.size() < i or C[i] is a null pointer, the caller will not have access to the computed coefficients C[i]. |
| B | [out] The coefficients of the original S with respect to the computed basis. If B is a non-null pointer and B matches the dimensions of B, then the coefficients computed during the orthogonalization routine will be stored in B, similar to calling innerProd( Sout, Sin, B );
B points to a Teuchos::SerialDenseMatrix with size inconsistent with S, then a std::invalid_argument exception will be thrown.Otherwise, if B is null, the caller will not have access to the computed coefficients.The normalization uses classical Gram-Schmidt iteration, so that B is an upper triangular matrix with positive diagonal elements. |
| MS | [in/out] If specified by the user, on input MS is required to be the image of S under the operator getOp(). On output, MS will be updated to reflect the changes in S. |
| MX | [in] If specified by the user, on MX[i] is required to be the image of X[i] under the operator getOp(). |
| MY | [in] If specified by the user, on MY[i] is required to be the image of Y[i] under the operator getOp(). |
X[i] != Teuchos::null or Y[i] != Teuchos::null, then X[i] and Y[i] are required to have the same number of columns, and each should have the same number of rows as S. i != j,
. biOrtho == true,
biOrtho == false, then
should be Hermitian positive-definite. X[i] and Y[i] have
columns and S has
columns, then C[i] if specified must be
. S has
columns, then B if specified must be
. Implements Anasazi::GenOrthoManager< ScalarType, MV, OP >.
Definition at line 892 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
Given a list of mutually orthogonal and internally orthonormal bases Q, this method projects a multivector X onto the space orthogonal to the individual Q[i], optionally returning the coefficients of X for the individual Q[i]. All of this is done with respect to the inner product innerProd().
This method calls projectGen() as follows:
See projectGen() for argument requirements.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 466 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
This method takes a multivector X and attempts to compute an orthonormal basis for
, with respect to innerProd().
This method calls projectAndNormalizeGen() as follows:
See projectAndNormalizeGen() for argument requirements.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 482 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
Given a set of bases Q[i] and a multivector X, this method computes an orthonormal basis for
.
This method calls projectAndNormalizeGen() as follows:
See projectAndNormalizeGen() for argument requirements.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 531 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
This method computes the error in orthonormality of a multivector, measured as the Frobenius norm of the difference innerProd(X,Y) - I. The method has the option of exploiting a caller-provided MX.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 437 of file AnasaziICGSOrthoManager.hpp.
|
virtual |
This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y). The method has the option of exploiting a caller-provided MX.
Implements Anasazi::MatOrthoManager< ScalarType, MV, OP >.
Definition at line 454 of file AnasaziICGSOrthoManager.hpp.
|
inline |
Set parameter for re-orthogonalization threshold.
Definition at line 382 of file AnasaziICGSOrthoManager.hpp.
|
inline |
Return parameter for re-orthogonalization threshold.
Definition at line 389 of file AnasaziICGSOrthoManager.hpp.
1.8.5