Teuchos - Trilinos Tools Package  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Teuchos_SerialSymDenseMatrix.hpp
Go to the documentation of this file.
1 
2 // @HEADER
3 // *****************************************************************************
4 // Teuchos: Common Tools Package
5 //
6 // Copyright 2004 NTESS and the Teuchos contributors.
7 // SPDX-License-Identifier: BSD-3-Clause
8 // *****************************************************************************
9 // @HEADER
10 
11 #ifndef _TEUCHOS_SERIALSYMDENSEMATRIX_HPP_
12 #define _TEUCHOS_SERIALSYMDENSEMATRIX_HPP_
13 
17 #include "Teuchos_CompObject.hpp"
18 #include "Teuchos_BLAS.hpp"
19 #include "Teuchos_ScalarTraits.hpp"
20 #include "Teuchos_DataAccess.hpp"
21 #include "Teuchos_ConfigDefs.hpp"
22 #include "Teuchos_Assert.hpp"
23 #include <utility>
24 #include <vector>
25 
88 namespace Teuchos {
89 
90 template<typename OrdinalType, typename ScalarType>
91 class SerialSymDenseMatrix : public CompObject, public BLAS<OrdinalType,ScalarType>
92 {
93  public:
94 
96  typedef OrdinalType ordinalType;
98  typedef ScalarType scalarType;
99 
101 
102 
111  SerialSymDenseMatrix() = default;
112 
114 
124  SerialSymDenseMatrix(OrdinalType numRowsCols, bool zeroOut = true);
125 
127 
138  SerialSymDenseMatrix(DataAccess CV, bool upper, ScalarType* values, OrdinalType stride, OrdinalType numRowsCols);
139 
142 
144 
153  SerialSymDenseMatrix(DataAccess CV, const SerialSymDenseMatrix<OrdinalType, ScalarType> &Source, OrdinalType numRowCols, OrdinalType startRowCol=0);
154 
156  virtual ~SerialSymDenseMatrix ();
158 
160 
161 
163 
172  int shape(OrdinalType numRowsCols);
173 
175 
184  int shapeUninitialized(OrdinalType numRowsCols);
185 
187 
197  int reshape(OrdinalType numRowsCols);
198 
200 
202  void setLower();
203 
205 
207  void setUpper();
208 
210 
212 
213 
215 
222 
224 
229 
231 
234  SerialSymDenseMatrix<OrdinalType, ScalarType>& operator= (const ScalarType value) { putScalar(value); return(*this); }
235 
237 
242  int putScalar( const ScalarType value = Teuchos::ScalarTraits<ScalarType>::zero(), bool fullMatrix = false );
243 
245 
249 
251 
253  int random( const ScalarType bias = 0.1*Teuchos::ScalarTraits<ScalarType>::one() );
254 
256 
258 
259 
261 
268  ScalarType& operator () (OrdinalType rowIndex, OrdinalType colIndex);
269 
271 
278  const ScalarType& operator () (OrdinalType rowIndex, OrdinalType colIndex) const;
279 
281 
283  ScalarType* values() const { return(values_); }
284 
286 
288 
289 
291  bool upper() const {return(upper_);};
292 
294  char UPLO() const {return(UPLO_);};
296 
298 
299 
301 
308 
310 
314 
316 
320 
322 
324 
325 
327 
331 
333 
337 
339 
341 
342 
344  OrdinalType numRows() const { return(numRowCols_); }
345 
347  OrdinalType numCols() const { return(numRowCols_); }
348 
350  OrdinalType stride() const { return(stride_); }
351 
353  bool empty() const { return(numRowCols_ == 0); }
354 
356 
358 
359 
362 
365 
369 
371 
372  virtual std::ostream& print(std::ostream& os) const;
374 
376 
377  protected:
378 
379  // In-place scaling of matrix.
380  void scale( const ScalarType alpha );
381 
382  // Copy the values from one matrix to the other.
383  void copyMat(bool inputUpper, ScalarType* inputMatrix, OrdinalType inputStride,
384  OrdinalType numRowCols, bool outputUpper, ScalarType* outputMatrix,
385  OrdinalType outputStride, OrdinalType startRowCol,
386  ScalarType alpha = ScalarTraits<ScalarType>::zero() );
387 
388  // Copy the values from the active triangle of the matrix to the other to make the matrix full symmetric.
389  void copyUPLOMat(bool inputUpper, ScalarType* inputMatrix,
390  OrdinalType inputStride, OrdinalType inputRows);
391 
392  void deleteArrays();
393  void checkIndex( OrdinalType rowIndex, OrdinalType colIndex = 0 ) const;
394 
395  static ScalarType*
396  allocateValues(const OrdinalType numRows,
397  const OrdinalType numCols)
398  {
399  const size_t size = size_t(numRows) * size_t(numCols);
400  return new ScalarType[size];
401  }
402 
403  OrdinalType numRowCols_ = 0;
404  OrdinalType stride_ = 0;
405  bool valuesCopied_ = false;
406  ScalarType* values_ = nullptr;
407  bool upper_ = false;
408  char UPLO_ {'L'};
409 };
410 
411 //----------------------------------------------------------------------------------------------------
412 // Constructors and Destructor
413 //----------------------------------------------------------------------------------------------------
414 
415 template<typename OrdinalType, typename ScalarType>
417  : numRowCols_(numRowCols_in), stride_(numRowCols_in), valuesCopied_(false), upper_(false), UPLO_('L')
418 {
419  values_ = allocateValues(stride_, numRowCols_);
420  valuesCopied_ = true;
421  if (zeroOut) {
422  const ScalarType ZERO = Teuchos::ScalarTraits<ScalarType>::zero();
423  putScalar(ZERO, true);
424  }
425 }
426 
427 template<typename OrdinalType, typename ScalarType>
429  DataAccess CV, bool upper_in, ScalarType* values_in, OrdinalType stride_in, OrdinalType numRowCols_in
430  )
431  : numRowCols_(numRowCols_in), stride_(stride_in), valuesCopied_(false),
432  values_(values_in), upper_(upper_in)
433 {
434  if (upper_)
435  UPLO_ = 'U';
436  else
437  UPLO_ = 'L';
438 
439  if(CV == Copy)
440  {
441  stride_ = numRowCols_;
442  values_ = allocateValues(stride_, numRowCols_);
443  copyMat(upper_in, values_in, stride_in, numRowCols_, upper_, values_, stride_, 0);
444  valuesCopied_ = true;
445  }
446 }
447 
448 template<typename OrdinalType, typename ScalarType>
450  : numRowCols_(Source.numRowCols_), stride_(0), valuesCopied_(true),
451  values_(0), upper_(Source.upper_), UPLO_(Source.UPLO_)
452 {
453  if (!Source.valuesCopied_)
454  {
455  stride_ = Source.stride_;
456  values_ = Source.values_;
457  valuesCopied_ = false;
458  }
459  else
460  {
461  stride_ = numRowCols_;
462  if(stride_ > 0 && numRowCols_ > 0) {
463  values_ = allocateValues(stride_, numRowCols_);
464  copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_, upper_, values_, stride_, 0);
465  }
466  else {
467  numRowCols_ = 0;
468  stride_ = 0;
469  valuesCopied_ = false;
470  }
471  }
472 }
473 
474 template<typename OrdinalType, typename ScalarType>
476  DataAccess CV, const SerialSymDenseMatrix<OrdinalType,
477  ScalarType> &Source, OrdinalType numRowCols_in, OrdinalType startRowCol )
478  : CompObject(), BLAS<OrdinalType,ScalarType>(),
479  numRowCols_(numRowCols_in), stride_(Source.stride_), valuesCopied_(false), upper_(Source.upper_), UPLO_(Source.UPLO_)
480 {
481  if(CV == Copy)
482  {
483  stride_ = numRowCols_in;
484  values_ = allocateValues(stride_, numRowCols_in);
485  copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_in, upper_, values_, stride_, startRowCol);
486  valuesCopied_ = true;
487  }
488  else // CV == View
489  {
490  values_ = Source.values_ + (stride_ * startRowCol) + startRowCol;
491  }
492 }
493 
494 template<typename OrdinalType, typename ScalarType>
496 {
497  deleteArrays();
498 }
499 
500 //----------------------------------------------------------------------------------------------------
501 // Shape methods
502 //----------------------------------------------------------------------------------------------------
503 
504 template<typename OrdinalType, typename ScalarType>
506 {
507  deleteArrays(); // Get rid of anything that might be already allocated
508  numRowCols_ = numRowCols_in;
509  stride_ = numRowCols_;
510  values_ = allocateValues(stride_, numRowCols_);
511  putScalar( Teuchos::ScalarTraits<ScalarType>::zero(), true );
512  valuesCopied_ = true;
513  return(0);
514 }
515 
516 template<typename OrdinalType, typename ScalarType>
518 {
519  deleteArrays(); // Get rid of anything that might be already allocated
520  numRowCols_ = numRowCols_in;
521  stride_ = numRowCols_;
522  values_ = allocateValues(stride_, numRowCols_);
523  valuesCopied_ = true;
524  return(0);
525 }
526 
527 template<typename OrdinalType, typename ScalarType>
529 {
530  // Allocate space for new matrix
531  ScalarType* values_tmp = allocateValues(numRowCols_in, numRowCols_in);
532  const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();
533  for(OrdinalType k = 0; k < numRowCols_in * numRowCols_in; k++)
534  {
535  values_tmp[k] = zero;
536  }
537  OrdinalType numRowCols_tmp = TEUCHOS_MIN(numRowCols_, numRowCols_in);
538  if(values_ != 0)
539  {
540  copyMat(upper_, values_, stride_, numRowCols_tmp, upper_, values_tmp, numRowCols_in, 0); // Copy principal submatrix of A to new A
541  }
542  deleteArrays(); // Get rid of anything that might be already allocated
543  numRowCols_ = numRowCols_in;
544  stride_ = numRowCols_;
545  values_ = values_tmp; // Set pointer to new A
546  valuesCopied_ = true;
547  return(0);
548 }
549 
550 //----------------------------------------------------------------------------------------------------
551 // Set methods
552 //----------------------------------------------------------------------------------------------------
553 
554 template<typename OrdinalType, typename ScalarType>
556 {
557  // Do nothing if the matrix is already a lower triangular matrix
558  if (upper_ != false) {
559  copyUPLOMat( true, values_, stride_, numRowCols_ );
560  upper_ = false;
561  UPLO_ = 'L';
562  }
563 }
564 
565 template<typename OrdinalType, typename ScalarType>
567 {
568  // Do nothing if the matrix is already an upper triangular matrix
569  if (upper_ == false) {
570  copyUPLOMat( false, values_, stride_, numRowCols_ );
571  upper_ = true;
572  UPLO_ = 'U';
573  }
574 }
575 
576 template<typename OrdinalType, typename ScalarType>
577 int SerialSymDenseMatrix<OrdinalType, ScalarType>::putScalar( const ScalarType value_in, bool fullMatrix )
578 {
579  // Set each value of the dense matrix to "value".
580  if (fullMatrix == true) {
581  for(OrdinalType j = 0; j < numRowCols_; j++)
582  {
583  for(OrdinalType i = 0; i < numRowCols_; i++)
584  {
585  values_[i + j*stride_] = value_in;
586  }
587  }
588  }
589  // Set the active upper or lower triangular part of the matrix to "value"
590  else {
591  if (upper_) {
592  for(OrdinalType j = 0; j < numRowCols_; j++) {
593  for(OrdinalType i = 0; i <= j; i++) {
594  values_[i + j*stride_] = value_in;
595  }
596  }
597  }
598  else {
599  for(OrdinalType j = 0; j < numRowCols_; j++) {
600  for(OrdinalType i = j; i < numRowCols_; i++) {
601  values_[i + j*stride_] = value_in;
602  }
603  }
604  }
605  }
606  return 0;
607 }
608 
609 template<typename OrdinalType, typename ScalarType> void
612 {
613  std::swap(values_ , B.values_);
614  std::swap(numRowCols_, B.numRowCols_);
615  std::swap(stride_, B.stride_);
616  std::swap(valuesCopied_, B.valuesCopied_);
617  std::swap(upper_, B.upper_);
618  std::swap(UPLO_, B.UPLO_);
619 }
620 
621 template<typename OrdinalType, typename ScalarType>
623 {
625 
626  // Set each value of the dense matrix to a random value.
627  std::vector<MT> diagSum( numRowCols_, Teuchos::ScalarTraits<MT>::zero() );
628  if (upper_) {
629  for(OrdinalType j = 0; j < numRowCols_; j++) {
630  for(OrdinalType i = 0; i < j; i++) {
631  values_[i + j*stride_] = ScalarTraits<ScalarType>::random();
632  diagSum[i] += Teuchos::ScalarTraits<ScalarType>::magnitude( values_[i + j*stride_] );
633  diagSum[j] += Teuchos::ScalarTraits<ScalarType>::magnitude( values_[i + j*stride_] );
634  }
635  }
636  }
637  else {
638  for(OrdinalType j = 0; j < numRowCols_; j++) {
639  for(OrdinalType i = j+1; i < numRowCols_; i++) {
640  values_[i + j*stride_] = ScalarTraits<ScalarType>::random();
641  diagSum[i] += Teuchos::ScalarTraits<ScalarType>::magnitude( values_[i + j*stride_] );
642  diagSum[j] += Teuchos::ScalarTraits<ScalarType>::magnitude( values_[i + j*stride_] );
643  }
644  }
645  }
646 
647  // Set the diagonal.
648  for(OrdinalType i = 0; i < numRowCols_; i++) {
649  values_[i + i*stride_] = diagSum[i] + bias;
650  }
651  return 0;
652 }
653 
654 template<typename OrdinalType, typename ScalarType>
657 {
658  if(this == &Source)
659  return(*this); // Special case of source same as target
660  if((!valuesCopied_) && (!Source.valuesCopied_) && (values_ == Source.values_)) {
661  upper_ = Source.upper_; // Might have to change the active part of the matrix.
662  return(*this); // Special case of both are views to same data.
663  }
664 
665  // If the source is a view then we will return a view, else we will return a copy.
666  if (!Source.valuesCopied_) {
667  if(valuesCopied_) {
668  // Clean up stored data if this was previously a copy.
669  deleteArrays();
670  }
671  numRowCols_ = Source.numRowCols_;
672  stride_ = Source.stride_;
673  values_ = Source.values_;
674  upper_ = Source.upper_;
675  UPLO_ = Source.UPLO_;
676  }
677  else {
678  // If we were a view, we will now be a copy.
679  if(!valuesCopied_) {
680  numRowCols_ = Source.numRowCols_;
681  stride_ = Source.numRowCols_;
682  upper_ = Source.upper_;
683  UPLO_ = Source.UPLO_;
684  if(stride_ > 0 && numRowCols_ > 0) {
685  values_ = allocateValues(stride_, numRowCols_);
686  valuesCopied_ = true;
687  }
688  else {
689  values_ = 0;
690  }
691  }
692  // If we were a copy, we will stay a copy.
693  else {
694  if((Source.numRowCols_ <= stride_) && (Source.numRowCols_ == numRowCols_)) { // we don't need to reallocate
695  numRowCols_ = Source.numRowCols_;
696  upper_ = Source.upper_;
697  UPLO_ = Source.UPLO_;
698  }
699  else { // we need to allocate more space (or less space)
700  deleteArrays();
701  numRowCols_ = Source.numRowCols_;
702  stride_ = Source.numRowCols_;
703  upper_ = Source.upper_;
704  UPLO_ = Source.UPLO_;
705  if(stride_ > 0 && numRowCols_ > 0) {
706  values_ = allocateValues(stride_, numRowCols_);
707  valuesCopied_ = true;
708  }
709  }
710  }
711  copyMat(Source.upper_, Source.values_, Source.stride_, Source.numRowCols_, upper_, values_, stride_, 0);
712  }
713  return(*this);
714 }
715 
716 template<typename OrdinalType, typename ScalarType>
718 {
719  this->scale(alpha);
720  return(*this);
721 }
722 
723 template<typename OrdinalType, typename ScalarType>
725 {
726  // Check for compatible dimensions
727  if ((numRowCols_ != Source.numRowCols_))
728  {
729  TEUCHOS_CHK_REF(*this); // Return *this without altering it.
730  }
731  copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_, upper_, values_, stride_, 0, ScalarTraits<ScalarType>::one());
732  return(*this);
733 }
734 
735 template<typename OrdinalType, typename ScalarType>
737 {
738  // Check for compatible dimensions
739  if ((numRowCols_ != Source.numRowCols_))
740  {
741  TEUCHOS_CHK_REF(*this); // Return *this without altering it.
742  }
743  copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_, upper_, values_, stride_, 0, -ScalarTraits<ScalarType>::one());
744  return(*this);
745 }
746 
747 template<typename OrdinalType, typename ScalarType>
749  if(this == &Source)
750  return(*this); // Special case of source same as target
751  if((!valuesCopied_) && (!Source.valuesCopied_) && (values_ == Source.values_)) {
752  upper_ = Source.upper_; // We may have to change the active part of the matrix.
753  return(*this); // Special case of both are views to same data.
754  }
755 
756  // Check for compatible dimensions
757  if ((numRowCols_ != Source.numRowCols_))
758  {
759  TEUCHOS_CHK_REF(*this); // Return *this without altering it.
760  }
761  copyMat(Source.upper_, Source.values_, Source.stride_, numRowCols_, upper_, values_, stride_, 0 );
762  return(*this);
763 }
764 
765 //----------------------------------------------------------------------------------------------------
766 // Accessor methods
767 //----------------------------------------------------------------------------------------------------
768 
769 template<typename OrdinalType, typename ScalarType>
770 inline ScalarType& SerialSymDenseMatrix<OrdinalType, ScalarType>::operator () (OrdinalType rowIndex, OrdinalType colIndex)
771 {
772 #ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
773  checkIndex( rowIndex, colIndex );
774 #endif
775  if ( rowIndex <= colIndex ) {
776  // Accessing upper triangular part of matrix
777  if (upper_)
778  return(values_[colIndex * stride_ + rowIndex]);
779  else
780  return(values_[rowIndex * stride_ + colIndex]);
781  }
782  else {
783  // Accessing lower triangular part of matrix
784  if (upper_)
785  return(values_[rowIndex * stride_ + colIndex]);
786  else
787  return(values_[colIndex * stride_ + rowIndex]);
788  }
789 }
790 
791 template<typename OrdinalType, typename ScalarType>
792 inline const ScalarType& SerialSymDenseMatrix<OrdinalType, ScalarType>::operator () (OrdinalType rowIndex, OrdinalType colIndex) const
793 {
794 #ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
795  checkIndex( rowIndex, colIndex );
796 #endif
797  if ( rowIndex <= colIndex ) {
798  // Accessing upper triangular part of matrix
799  if (upper_)
800  return(values_[colIndex * stride_ + rowIndex]);
801  else
802  return(values_[rowIndex * stride_ + colIndex]);
803  }
804  else {
805  // Accessing lower triangular part of matrix
806  if (upper_)
807  return(values_[rowIndex * stride_ + colIndex]);
808  else
809  return(values_[colIndex * stride_ + rowIndex]);
810  }
811 }
812 
813 //----------------------------------------------------------------------------------------------------
814 // Norm methods
815 //----------------------------------------------------------------------------------------------------
816 
817 template<typename OrdinalType, typename ScalarType>
819 {
820  return(normInf());
821 }
822 
823 template<typename OrdinalType, typename ScalarType>
825 {
826  typedef typename ScalarTraits<ScalarType>::magnitudeType MT;
827 
828  OrdinalType i, j;
829 
830  MT sum, anorm = ScalarTraits<MT>::zero();
831  ScalarType* ptr;
832 
833  if (upper_) {
834  for (j=0; j<numRowCols_; j++) {
835  sum = ScalarTraits<MT>::zero();
836  ptr = values_ + j*stride_;
837  for (i=0; i<j; i++) {
838  sum += ScalarTraits<ScalarType>::magnitude( *ptr++ );
839  }
840  ptr = values_ + j + j*stride_;
841  for (i=j; i<numRowCols_; i++) {
843  ptr += stride_;
844  }
845  anorm = TEUCHOS_MAX( anorm, sum );
846  }
847  }
848  else {
849  for (j=0; j<numRowCols_; j++) {
850  sum = ScalarTraits<MT>::zero();
851  ptr = values_ + j + j*stride_;
852  for (i=j; i<numRowCols_; i++) {
853  sum += ScalarTraits<ScalarType>::magnitude( *ptr++ );
854  }
855  ptr = values_ + j;
856  for (i=0; i<j; i++) {
858  ptr += stride_;
859  }
860  anorm = TEUCHOS_MAX( anorm, sum );
861  }
862  }
863  return(anorm);
864 }
865 
866 template<typename OrdinalType, typename ScalarType>
868 {
869  typedef typename ScalarTraits<ScalarType>::magnitudeType MT;
870 
871  OrdinalType i, j;
872 
873  MT sum = ScalarTraits<MT>::zero(), anorm = ScalarTraits<MT>::zero();
874 
875  if (upper_) {
876  for (j = 0; j < numRowCols_; j++) {
877  for (i = 0; i < j; i++) {
878  sum += ScalarTraits<ScalarType>::magnitude(2.0*values_[i+j*stride_]*values_[i+j*stride_]);
879  }
880  sum += ScalarTraits<ScalarType>::magnitude(values_[j + j*stride_]*values_[j + j*stride_]);
881  }
882  }
883  else {
884  for (j = 0; j < numRowCols_; j++) {
885  sum += ScalarTraits<ScalarType>::magnitude(values_[j + j*stride_]*values_[j + j*stride_]);
886  for (i = j+1; i < numRowCols_; i++) {
887  sum += ScalarTraits<ScalarType>::magnitude(2.0*values_[i+j*stride_]*values_[i+j*stride_]);
888  }
889  }
890  }
892  return(anorm);
893 }
894 
895 //----------------------------------------------------------------------------------------------------
896 // Comparison methods
897 //----------------------------------------------------------------------------------------------------
898 
899 template<typename OrdinalType, typename ScalarType>
901 {
902  bool result = 1;
903  if((numRowCols_ != Operand.numRowCols_)) {
904  result = 0;
905  }
906  else {
907  OrdinalType i, j;
908  for(i = 0; i < numRowCols_; i++) {
909  for(j = 0; j < numRowCols_; j++) {
910  if((*this)(i, j) != Operand(i, j)) {
911  return 0;
912  }
913  }
914  }
915  }
916  return result;
917 }
918 
919 template<typename OrdinalType, typename ScalarType>
921 {
922  return !((*this) == Operand);
923 }
924 
925 //----------------------------------------------------------------------------------------------------
926 // Multiplication method
927 //----------------------------------------------------------------------------------------------------
928 
929 template<typename OrdinalType, typename ScalarType>
930 void SerialSymDenseMatrix<OrdinalType, ScalarType>::scale( const ScalarType alpha )
931 {
932  OrdinalType i, j;
933  ScalarType* ptr;
934 
935  if (upper_) {
936  for (j=0; j<numRowCols_; j++) {
937  ptr = values_ + j*stride_;
938  for (i=0; i<= j; i++) { *ptr = alpha * (*ptr); ptr++; }
939  }
940  }
941  else {
942  for (j=0; j<numRowCols_; j++) {
943  ptr = values_ + j*stride_ + j;
944  for (i=j; i<numRowCols_; i++) { *ptr = alpha * (*ptr); ptr++; }
945  }
946  }
947 }
948 
949 /*
950 template<typename OrdinalType, typename ScalarType>
951 int SerialSymDenseMatrix<OrdinalType, ScalarType>::scale( const SerialSymDenseMatrix<OrdinalType,ScalarType>& A )
952 {
953  OrdinalType i, j;
954  ScalarType* ptr;
955 
956  // Check for compatible dimensions
957  if ((numRowCols_ != A.numRowCols_)) {
958  TEUCHOS_CHK_ERR(-1); // Return error
959  }
960 
961  if (upper_) {
962  for (j=0; j<numRowCols_; j++) {
963  ptr = values_ + j*stride_;
964  for (i=0; i<= j; i++) { *ptr = A(i,j) * (*ptr); ptr++; }
965  }
966  }
967  else {
968  for (j=0; j<numRowCols_; j++) {
969  ptr = values_ + j*stride_;
970  for (i=j; i<numRowCols_; i++) { *ptr = A(i,j) * (*ptr); ptr++; }
971  }
972  }
973 
974  return(0);
975 }
976 */
977 
978 template<typename OrdinalType, typename ScalarType>
979 std::ostream& SerialSymDenseMatrix<OrdinalType, ScalarType>::print(std::ostream& os) const
980 {
981  os << std::endl;
982  if(valuesCopied_)
983  os << "Values_copied : yes" << std::endl;
984  else
985  os << "Values_copied : no" << std::endl;
986  os << "Rows / Columns : " << numRowCols_ << std::endl;
987  os << "LDA : " << stride_ << std::endl;
988  if (upper_)
989  os << "Storage: Upper" << std::endl;
990  else
991  os << "Storage: Lower" << std::endl;
992  if(numRowCols_ == 0) {
993  os << "(matrix is empty, no values to display)" << std::endl;
994  } else {
995  for(OrdinalType i = 0; i < numRowCols_; i++) {
996  for(OrdinalType j = 0; j < numRowCols_; j++){
997  os << (*this)(i,j) << " ";
998  }
999  os << std::endl;
1000  }
1001  }
1002  return os;
1003 }
1004 
1005 //----------------------------------------------------------------------------------------------------
1006 // Protected methods
1007 //----------------------------------------------------------------------------------------------------
1008 
1009 template<typename OrdinalType, typename ScalarType>
1010 inline void SerialSymDenseMatrix<OrdinalType, ScalarType>::checkIndex( OrdinalType rowIndex, OrdinalType colIndex ) const {
1011  TEUCHOS_TEST_FOR_EXCEPTION(rowIndex < 0 || rowIndex >= numRowCols_, std::out_of_range,
1012  "SerialSymDenseMatrix<T>::checkIndex: "
1013  "Row index " << rowIndex << " out of range [0, "<< numRowCols_ << ")");
1014  TEUCHOS_TEST_FOR_EXCEPTION(colIndex < 0 || colIndex >= numRowCols_, std::out_of_range,
1015  "SerialSymDenseMatrix<T>::checkIndex: "
1016  "Col index " << colIndex << " out of range [0, "<< numRowCols_ << ")");
1017 }
1018 
1019 template<typename OrdinalType, typename ScalarType>
1020 void SerialSymDenseMatrix<OrdinalType, ScalarType>::deleteArrays(void)
1021 {
1022  if (valuesCopied_)
1023  {
1024  delete [] values_;
1025  values_ = 0;
1026  valuesCopied_ = false;
1027  }
1028 }
1029 
1030 template<typename OrdinalType, typename ScalarType>
1031 void SerialSymDenseMatrix<OrdinalType, ScalarType>::copyMat(
1032  bool inputUpper, ScalarType* inputMatrix,
1033  OrdinalType inputStride, OrdinalType numRowCols_in,
1034  bool outputUpper, ScalarType* outputMatrix,
1035  OrdinalType outputStride, OrdinalType startRowCol,
1036  ScalarType alpha
1037  )
1038 {
1039  OrdinalType i, j;
1040  ScalarType* ptr1 = 0;
1041  ScalarType* ptr2 = 0;
1042 
1043  for (j = 0; j < numRowCols_in; j++) {
1044  if (inputUpper == true) {
1045  // The input matrix is upper triangular, start at the beginning of each column.
1046  ptr2 = inputMatrix + (j + startRowCol) * inputStride + startRowCol;
1047  if (outputUpper == true) {
1048  // The output matrix matches the same pattern as the input matrix.
1049  ptr1 = outputMatrix + j*outputStride;
1050  if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
1051  for(i = 0; i <= j; i++) {
1052  *ptr1++ += alpha*(*ptr2++);
1053  }
1054  } else {
1055  for(i = 0; i <= j; i++) {
1056  *ptr1++ = *ptr2++;
1057  }
1058  }
1059  }
1060  else {
1061  // The output matrix has the opposite pattern as the input matrix.
1062  // Copy down across rows of the output matrix, but down columns of the input matrix.
1063  ptr1 = outputMatrix + j;
1064  if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
1065  for(i = 0; i <= j; i++) {
1066  *ptr1 += alpha*(*ptr2++);
1067  ptr1 += outputStride;
1068  }
1069  } else {
1070  for(i = 0; i <= j; i++) {
1071  *ptr1 = *ptr2++;
1072  ptr1 += outputStride;
1073  }
1074  }
1075  }
1076  }
1077  else {
1078  // The input matrix is lower triangular, start at the diagonal of each row.
1079  ptr2 = inputMatrix + (startRowCol+j) * inputStride + startRowCol + j;
1080  if (outputUpper == true) {
1081  // The output matrix has the opposite pattern as the input matrix.
1082  // Copy across rows of the output matrix, but down columns of the input matrix.
1083  ptr1 = outputMatrix + j*outputStride + j;
1084  if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
1085  for(i = j; i < numRowCols_in; i++) {
1086  *ptr1 += alpha*(*ptr2++);
1087  ptr1 += outputStride;
1088  }
1089  } else {
1090  for(i = j; i < numRowCols_in; i++) {
1091  *ptr1 = *ptr2++;
1092  ptr1 += outputStride;
1093  }
1094  }
1095  }
1096  else {
1097  // The output matrix matches the same pattern as the input matrix.
1098  ptr1 = outputMatrix + j*outputStride + j;
1099  if (alpha != Teuchos::ScalarTraits<ScalarType>::zero() ) {
1100  for(i = j; i < numRowCols_in; i++) {
1101  *ptr1++ += alpha*(*ptr2++);
1102  }
1103  } else {
1104  for(i = j; i < numRowCols_in; i++) {
1105  *ptr1++ = *ptr2++;
1106  }
1107  }
1108  }
1109  }
1110  }
1111 }
1112 
1113 template<typename OrdinalType, typename ScalarType>
1114 void SerialSymDenseMatrix<OrdinalType, ScalarType>::copyUPLOMat(
1115  bool inputUpper, ScalarType* inputMatrix,
1116  OrdinalType inputStride, OrdinalType inputRows
1117  )
1118 {
1119  OrdinalType i, j;
1120  ScalarType * ptr1 = 0;
1121  ScalarType * ptr2 = 0;
1122 
1123  if (inputUpper) {
1124  for (j=1; j<inputRows; j++) {
1125  ptr1 = inputMatrix + j;
1126  ptr2 = inputMatrix + j*inputStride;
1127  for (i=0; i<j; i++) {
1128  *ptr1 = *ptr2++;
1129  ptr1+=inputStride;
1130  }
1131  }
1132  }
1133  else {
1134  for (i=1; i<inputRows; i++) {
1135  ptr1 = inputMatrix + i;
1136  ptr2 = inputMatrix + i*inputStride;
1137  for (j=0; j<i; j++) {
1138  *ptr2++ = *ptr1;
1139  ptr1+=inputStride;
1140  }
1141  }
1142  }
1143 }
1144 
1146 template<typename OrdinalType, typename ScalarType>
1148 public:
1152  : obj(obj_in) {}
1153 };
1154 
1156 template<typename OrdinalType, typename ScalarType>
1157 std::ostream&
1158 operator<<(std::ostream &out,
1160 {
1161  printer.obj.print(out);
1162  return out;
1163 }
1164 
1166 template<typename OrdinalType, typename ScalarType>
1167 SerialSymDenseMatrixPrinter<OrdinalType,ScalarType>
1169 {
1171 }
1172 
1173 
1174 } // namespace Teuchos
1175 
1176 #endif /* _TEUCHOS_SERIALSYMDENSEMATRIX_HPP_ */
bool upper() const
Returns true if upper triangular part of this matrix has and will be used.
Ostream manipulator for SerialSymDenseMatrix.
SerialSymDenseMatrix()=default
Default constructor; defines a zero size object.
T magnitudeType
Mandatory typedef for result of magnitude.
Templated interface class to BLAS routines.
virtual std::ostream & print(std::ostream &os) const
Print method. Defines the behavior of the std::ostream &lt;&lt; operator.
SerialBandDenseMatrixPrinter< OrdinalType, ScalarType > printMat(const SerialBandDenseMatrix< OrdinalType, ScalarType > &obj)
Return SerialBandDenseMatrix ostream manipulator Use as:
ScalarType * values() const
Returns the pointer to the ScalarType data array contained in the object.
ScalarType & operator()(OrdinalType rowIndex, OrdinalType colIndex)
Element access method (non-const).
void swap(SerialSymDenseMatrix< OrdinalType, ScalarType > &B)
Swap values between this matrix and incoming matrix.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
Macro for throwing an exception with breakpointing to ease debugging.
int shape(OrdinalType numRowsCols)
Set dimensions of a Teuchos::SerialSymDenseMatrix object; init values to zero.
Teuchos header file which uses auto-configuration information to include necessary C++ headers...
Templated BLAS wrapper.
This class creates and provides basic support for symmetric, positive-definite dense matrices of temp...
OrdinalType numRows() const
Returns the row dimension of this matrix.
ScalarTraits< ScalarType >::magnitudeType normInf() const
Returns the Infinity-norm of the matrix.
Object for storing data and providing functionality that is common to all computational classes...
int reshape(OrdinalType numRowsCols)
Reshape a Teuchos::SerialSymDenseMatrix object.
This structure defines some basic traits for a scalar field type.
void setLower()
Specify that the lower triangle of the this matrix should be used.
void setUpper()
Specify that the upper triangle of the this matrix should be used.
Functionality and data that is common to all computational classes.
SerialSymDenseMatrix< OrdinalType, ScalarType > & operator*=(const ScalarType alpha)
Inplace scalar-matrix product A = alpha*A.
bool operator==(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Operand) const
Equality of two matrices.
int putScalar(const ScalarType value=Teuchos::ScalarTraits< ScalarType >::zero(), bool fullMatrix=false)
Set all values in the matrix to a constant value.
SerialSymDenseMatrix< OrdinalType, ScalarType > & operator+=(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Source)
Add another matrix to this matrix.
ScalarTraits< ScalarType >::magnitudeType normOne() const
Returns the 1-norm of the matrix.
int random(const ScalarType bias=0.1 *Teuchos::ScalarTraits< ScalarType >::one())
Set all values in the active area (upper/lower triangle) of this matrix to be random numbers...
char UPLO() const
Returns character value of UPLO used by LAPACK routines.
virtual ~SerialSymDenseMatrix()
Teuchos::SerialSymDenseMatrix destructor.
static magnitudeType magnitude(T a)
Returns the magnitudeType of the scalar type a.
SerialSymDenseMatrix< OrdinalType, ScalarType > & operator-=(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Source)
Subtract another matrix from this matrix.
OrdinalType ordinalType
Typedef for ordinal type.
SerialSymDenseMatrix< OrdinalType, ScalarType > & operator=(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Source)
Copies values from one matrix to another.
int shapeUninitialized(OrdinalType numRowsCols)
Set dimensions of a Teuchos::SerialSymDenseMatrix object; don&#39;t initialize values.
Defines basic traits for the scalar field type.
static T zero()
Returns representation of zero for this scalar type.
static T random()
Returns a random number (between -one() and +one()) of this scalar type.
OrdinalType stride() const
Returns the stride between the columns of this matrix in memory.
OrdinalType numCols() const
Returns the column dimension of this matrix.
ScalarTraits< ScalarType >::magnitudeType normFrobenius() const
Returns the Frobenius-norm of the matrix.
SerialSymDenseMatrix< OrdinalType, ScalarType > & assign(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Source)
Copies values from one matrix to another.
bool operator!=(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Operand) const
Inequality of two matrices.
Teuchos::DataAccess Mode enumerable type.
bool empty() const
Returns whether this matrix is empty.
ScalarType scalarType
Typedef for scalar type.