11 #ifndef _TEUCHOS_SERIALSYMDENSEMATRIX_HPP_
12 #define _TEUCHOS_SERIALSYMDENSEMATRIX_HPP_
90 template<
typename OrdinalType,
typename ScalarType>
172 int shape(OrdinalType numRowsCols);
197 int reshape(OrdinalType numRowsCols);
268 ScalarType&
operator () (OrdinalType rowIndex, OrdinalType colIndex);
278 const ScalarType&
operator () (OrdinalType rowIndex, OrdinalType colIndex)
const;
294 char UPLO()
const {
return(UPLO_);};
372 virtual std::ostream&
print(std::ostream& os)
const;
380 void scale(
const ScalarType alpha );
383 void copyMat(
bool inputUpper, ScalarType* inputMatrix, OrdinalType inputStride,
384 OrdinalType numRowCols,
bool outputUpper, ScalarType* outputMatrix,
385 OrdinalType outputStride, OrdinalType startRowCol,
389 void copyUPLOMat(
bool inputUpper, ScalarType* inputMatrix,
390 OrdinalType inputStride, OrdinalType inputRows);
393 void checkIndex( OrdinalType rowIndex, OrdinalType colIndex = 0 )
const;
399 const size_t size = size_t(numRows) * size_t(numCols);
400 return new ScalarType[size];
415 template<
typename OrdinalType,
typename ScalarType>
417 : numRowCols_(numRowCols_in), stride_(numRowCols_in), valuesCopied_(false), upper_(false), UPLO_(
'L')
427 template<
typename OrdinalType,
typename ScalarType>
429 DataAccess CV,
bool upper_in, ScalarType* values_in, OrdinalType stride_in, OrdinalType numRowCols_in
431 : numRowCols_(numRowCols_in), stride_(stride_in), valuesCopied_(false),
432 values_(values_in), upper_(upper_in)
448 template<
typename OrdinalType,
typename ScalarType>
450 : numRowCols_(Source.numRowCols_), stride_(0), valuesCopied_(true),
451 values_(0), upper_(Source.upper_), UPLO_(Source.UPLO_)
474 template<
typename OrdinalType,
typename ScalarType>
477 ScalarType> &Source, OrdinalType numRowCols_in, OrdinalType startRowCol )
479 numRowCols_(numRowCols_in), stride_(Source.stride_), valuesCopied_(false), upper_(Source.upper_), UPLO_(Source.UPLO_)
494 template<
typename OrdinalType,
typename ScalarType>
504 template<
typename OrdinalType,
typename ScalarType>
508 numRowCols_ = numRowCols_in;
509 stride_ = numRowCols_;
510 values_ = allocateValues(stride_, numRowCols_);
512 valuesCopied_ =
true;
516 template<
typename OrdinalType,
typename ScalarType>
520 numRowCols_ = numRowCols_in;
521 stride_ = numRowCols_;
522 values_ = allocateValues(stride_, numRowCols_);
523 valuesCopied_ =
true;
527 template<
typename OrdinalType,
typename ScalarType>
531 ScalarType* values_tmp = allocateValues(numRowCols_in, numRowCols_in);
533 for(OrdinalType k = 0; k < numRowCols_in * numRowCols_in; k++)
535 values_tmp[k] = zero;
537 OrdinalType numRowCols_tmp =
TEUCHOS_MIN(numRowCols_, numRowCols_in);
540 copyMat(upper_, values_, stride_, numRowCols_tmp, upper_, values_tmp, numRowCols_in, 0);
543 numRowCols_ = numRowCols_in;
544 stride_ = numRowCols_;
545 values_ = values_tmp;
546 valuesCopied_ =
true;
554 template<
typename OrdinalType,
typename ScalarType>
558 if (upper_ !=
false) {
559 copyUPLOMat(
true, values_, stride_, numRowCols_ );
565 template<
typename OrdinalType,
typename ScalarType>
569 if (upper_ ==
false) {
570 copyUPLOMat(
false, values_, stride_, numRowCols_ );
576 template<
typename OrdinalType,
typename ScalarType>
580 if (fullMatrix ==
true) {
581 for(OrdinalType j = 0; j < numRowCols_; j++)
583 for(OrdinalType i = 0; i < numRowCols_; i++)
585 values_[i + j*stride_] = value_in;
592 for(OrdinalType j = 0; j < numRowCols_; j++) {
593 for(OrdinalType i = 0; i <= j; i++) {
594 values_[i + j*stride_] = value_in;
599 for(OrdinalType j = 0; j < numRowCols_; j++) {
600 for(OrdinalType i = j; i < numRowCols_; i++) {
601 values_[i + j*stride_] = value_in;
609 template<
typename OrdinalType,
typename ScalarType>
void
613 std::swap(values_ , B.
values_);
617 std::swap(upper_, B.
upper_);
618 std::swap(UPLO_, B.UPLO_);
621 template<
typename OrdinalType,
typename ScalarType>
629 for(OrdinalType j = 0; j < numRowCols_; j++) {
630 for(OrdinalType i = 0; i < j; i++) {
638 for(OrdinalType j = 0; j < numRowCols_; j++) {
639 for(OrdinalType i = j+1; i < numRowCols_; i++) {
648 for(OrdinalType i = 0; i < numRowCols_; i++) {
649 values_[i + i*stride_] = diagSum[i] + bias;
654 template<
typename OrdinalType,
typename ScalarType>
675 UPLO_ = Source.UPLO_;
683 UPLO_ = Source.UPLO_;
684 if(stride_ > 0 && numRowCols_ > 0) {
685 values_ = allocateValues(stride_, numRowCols_);
686 valuesCopied_ =
true;
697 UPLO_ = Source.UPLO_;
704 UPLO_ = Source.UPLO_;
705 if(stride_ > 0 && numRowCols_ > 0) {
706 values_ = allocateValues(stride_, numRowCols_);
707 valuesCopied_ =
true;
716 template<
typename OrdinalType,
typename ScalarType>
723 template<
typename OrdinalType,
typename ScalarType>
735 template<
typename OrdinalType,
typename ScalarType>
747 template<
typename OrdinalType,
typename ScalarType>
761 copyMat(Source.
upper_, Source.
values_, Source.
stride_, numRowCols_, upper_, values_, stride_, 0 );
769 template<
typename OrdinalType,
typename ScalarType>
772 #ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
773 checkIndex( rowIndex, colIndex );
775 if ( rowIndex <= colIndex ) {
778 return(values_[colIndex * stride_ + rowIndex]);
780 return(values_[rowIndex * stride_ + colIndex]);
785 return(values_[rowIndex * stride_ + colIndex]);
787 return(values_[colIndex * stride_ + rowIndex]);
791 template<
typename OrdinalType,
typename ScalarType>
794 #ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
795 checkIndex( rowIndex, colIndex );
797 if ( rowIndex <= colIndex ) {
800 return(values_[colIndex * stride_ + rowIndex]);
802 return(values_[rowIndex * stride_ + colIndex]);
807 return(values_[rowIndex * stride_ + colIndex]);
809 return(values_[colIndex * stride_ + rowIndex]);
817 template<
typename OrdinalType,
typename ScalarType>
823 template<
typename OrdinalType,
typename ScalarType>
834 for (j=0; j<numRowCols_; j++) {
836 ptr = values_ + j*stride_;
837 for (i=0; i<j; i++) {
840 ptr = values_ + j + j*stride_;
841 for (i=j; i<numRowCols_; i++) {
849 for (j=0; j<numRowCols_; j++) {
851 ptr = values_ + j + j*stride_;
852 for (i=j; i<numRowCols_; i++) {
856 for (i=0; i<j; i++) {
866 template<
typename OrdinalType,
typename ScalarType>
876 for (j = 0; j < numRowCols_; j++) {
877 for (i = 0; i < j; i++) {
884 for (j = 0; j < numRowCols_; j++) {
886 for (i = j+1; i < numRowCols_; i++) {
899 template<
typename OrdinalType,
typename ScalarType>
908 for(i = 0; i < numRowCols_; i++) {
909 for(j = 0; j < numRowCols_; j++) {
910 if((*
this)(i, j) != Operand(i, j)) {
919 template<
typename OrdinalType,
typename ScalarType>
922 return !((*this) == Operand);
929 template<
typename OrdinalType,
typename ScalarType>
936 for (j=0; j<numRowCols_; j++) {
937 ptr = values_ + j*stride_;
938 for (i=0; i<= j; i++) { *ptr = alpha * (*ptr); ptr++; }
942 for (j=0; j<numRowCols_; j++) {
943 ptr = values_ + j*stride_ + j;
944 for (i=j; i<numRowCols_; i++) { *ptr = alpha * (*ptr); ptr++; }
978 template<
typename OrdinalType,
typename ScalarType>
983 os <<
"Values_copied : yes" << std::endl;
985 os <<
"Values_copied : no" << std::endl;
986 os <<
"Rows / Columns : " << numRowCols_ << std::endl;
987 os <<
"LDA : " << stride_ << std::endl;
989 os <<
"Storage: Upper" << std::endl;
991 os <<
"Storage: Lower" << std::endl;
992 if(numRowCols_ == 0) {
993 os <<
"(matrix is empty, no values to display)" << std::endl;
995 for(OrdinalType i = 0; i < numRowCols_; i++) {
996 for(OrdinalType j = 0; j < numRowCols_; j++){
997 os << (*this)(i,j) <<
" ";
1009 template<
typename OrdinalType,
typename ScalarType>
1012 "SerialSymDenseMatrix<T>::checkIndex: "
1013 "Row index " << rowIndex <<
" out of range [0, "<< numRowCols_ <<
")");
1015 "SerialSymDenseMatrix<T>::checkIndex: "
1016 "Col index " << colIndex <<
" out of range [0, "<< numRowCols_ <<
")");
1019 template<
typename OrdinalType,
typename ScalarType>
1026 valuesCopied_ =
false;
1030 template<
typename OrdinalType,
typename ScalarType>
1032 bool inputUpper, ScalarType* inputMatrix,
1033 OrdinalType inputStride, OrdinalType numRowCols_in,
1034 bool outputUpper, ScalarType* outputMatrix,
1035 OrdinalType outputStride, OrdinalType startRowCol,
1040 ScalarType* ptr1 = 0;
1041 ScalarType* ptr2 = 0;
1043 for (j = 0; j < numRowCols_in; j++) {
1044 if (inputUpper ==
true) {
1046 ptr2 = inputMatrix + (j + startRowCol) * inputStride + startRowCol;
1047 if (outputUpper ==
true) {
1049 ptr1 = outputMatrix + j*outputStride;
1051 for(i = 0; i <= j; i++) {
1052 *ptr1++ += alpha*(*ptr2++);
1055 for(i = 0; i <= j; i++) {
1063 ptr1 = outputMatrix + j;
1065 for(i = 0; i <= j; i++) {
1066 *ptr1 += alpha*(*ptr2++);
1067 ptr1 += outputStride;
1070 for(i = 0; i <= j; i++) {
1072 ptr1 += outputStride;
1079 ptr2 = inputMatrix + (startRowCol+j) * inputStride + startRowCol + j;
1080 if (outputUpper ==
true) {
1083 ptr1 = outputMatrix + j*outputStride + j;
1085 for(i = j; i < numRowCols_in; i++) {
1086 *ptr1 += alpha*(*ptr2++);
1087 ptr1 += outputStride;
1090 for(i = j; i < numRowCols_in; i++) {
1092 ptr1 += outputStride;
1098 ptr1 = outputMatrix + j*outputStride + j;
1100 for(i = j; i < numRowCols_in; i++) {
1101 *ptr1++ += alpha*(*ptr2++);
1104 for(i = j; i < numRowCols_in; i++) {
1113 template<
typename OrdinalType,
typename ScalarType>
1115 bool inputUpper, ScalarType* inputMatrix,
1116 OrdinalType inputStride, OrdinalType inputRows
1120 ScalarType * ptr1 = 0;
1121 ScalarType * ptr2 = 0;
1124 for (j=1; j<inputRows; j++) {
1125 ptr1 = inputMatrix + j;
1126 ptr2 = inputMatrix + j*inputStride;
1127 for (i=0; i<j; i++) {
1134 for (i=1; i<inputRows; i++) {
1135 ptr1 = inputMatrix + i;
1136 ptr2 = inputMatrix + i*inputStride;
1137 for (j=0; j<i; j++) {
1146 template<
typename OrdinalType,
typename ScalarType>
1156 template<
typename OrdinalType,
typename ScalarType>
1161 printer.
obj.print(out);
1166 template<
typename OrdinalType,
typename ScalarType>
1167 SerialSymDenseMatrixPrinter<OrdinalType,ScalarType>
bool upper() const
Returns true if upper triangular part of this matrix has and will be used.
void copyUPLOMat(bool inputUpper, ScalarType *inputMatrix, OrdinalType inputStride, OrdinalType inputRows)
Ostream manipulator for SerialSymDenseMatrix.
SerialSymDenseMatrix()=default
Default constructor; defines a zero size object.
static ScalarType * allocateValues(const OrdinalType numRows, const OrdinalType numCols)
Templated interface class to BLAS routines.
SerialSymDenseMatrixPrinter(const SerialSymDenseMatrix< OrdinalType, ScalarType > &obj_in)
virtual std::ostream & print(std::ostream &os) const
Print method. Defines the behavior of the std::ostream << operator.
SerialBandDenseMatrixPrinter< OrdinalType, ScalarType > printMat(const SerialBandDenseMatrix< OrdinalType, ScalarType > &obj)
Return SerialBandDenseMatrix ostream manipulator Use as:
ScalarType * values() const
Returns the pointer to the ScalarType data array contained in the object.
const SerialSymDenseMatrix< OrdinalType, ScalarType > & obj
ScalarType & operator()(OrdinalType rowIndex, OrdinalType colIndex)
Element access method (non-const).
void swap(SerialSymDenseMatrix< OrdinalType, ScalarType > &B)
Swap values between this matrix and incoming matrix.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
Macro for throwing an exception with breakpointing to ease debugging.
int shape(OrdinalType numRowsCols)
Set dimensions of a Teuchos::SerialSymDenseMatrix object; init values to zero.
Teuchos header file which uses auto-configuration information to include necessary C++ headers...
This class creates and provides basic support for symmetric, positive-definite dense matrices of temp...
OrdinalType numRows() const
Returns the row dimension of this matrix.
ScalarTraits< ScalarType >::magnitudeType normInf() const
Returns the Infinity-norm of the matrix.
Object for storing data and providing functionality that is common to all computational classes...
int reshape(OrdinalType numRowsCols)
Reshape a Teuchos::SerialSymDenseMatrix object.
This structure defines some basic traits for a scalar field type.
void setLower()
Specify that the lower triangle of the this matrix should be used.
void setUpper()
Specify that the upper triangle of the this matrix should be used.
Functionality and data that is common to all computational classes.
void checkIndex(OrdinalType rowIndex, OrdinalType colIndex=0) const
std::ostream & operator<<(std::ostream &os, BigUInt< n > a)
SerialSymDenseMatrix< OrdinalType, ScalarType > & operator*=(const ScalarType alpha)
Inplace scalar-matrix product A = alpha*A.
bool operator==(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Operand) const
Equality of two matrices.
int putScalar(const ScalarType value=Teuchos::ScalarTraits< ScalarType >::zero(), bool fullMatrix=false)
Set all values in the matrix to a constant value.
SerialSymDenseMatrix< OrdinalType, ScalarType > & operator+=(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Source)
Add another matrix to this matrix.
ScalarTraits< ScalarType >::magnitudeType normOne() const
Returns the 1-norm of the matrix.
#define TEUCHOS_MAX(x, y)
int random(const ScalarType bias=0.1 *Teuchos::ScalarTraits< ScalarType >::one())
Set all values in the active area (upper/lower triangle) of this matrix to be random numbers...
char UPLO() const
Returns character value of UPLO used by LAPACK routines.
virtual ~SerialSymDenseMatrix()
Teuchos::SerialSymDenseMatrix destructor.
void scale(const ScalarType alpha)
static magnitudeType magnitude(T a)
Returns the magnitudeType of the scalar type a.
SerialSymDenseMatrix< OrdinalType, ScalarType > & operator-=(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Source)
Subtract another matrix from this matrix.
OrdinalType ordinalType
Typedef for ordinal type.
SerialSymDenseMatrix< OrdinalType, ScalarType > & operator=(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Source)
Copies values from one matrix to another.
int shapeUninitialized(OrdinalType numRowsCols)
Set dimensions of a Teuchos::SerialSymDenseMatrix object; don't initialize values.
Defines basic traits for the scalar field type.
static T zero()
Returns representation of zero for this scalar type.
static T random()
Returns a random number (between -one() and +one()) of this scalar type.
OrdinalType stride() const
Returns the stride between the columns of this matrix in memory.
OrdinalType numCols() const
Returns the column dimension of this matrix.
ScalarTraits< ScalarType >::magnitudeType normFrobenius() const
Returns the Frobenius-norm of the matrix.
#define TEUCHOS_CHK_REF(a)
SerialSymDenseMatrix< OrdinalType, ScalarType > & assign(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Source)
Copies values from one matrix to another.
bool operator!=(const SerialSymDenseMatrix< OrdinalType, ScalarType > &Operand) const
Inequality of two matrices.
#define TEUCHOS_MIN(x, y)
Teuchos::DataAccess Mode enumerable type.
bool empty() const
Returns whether this matrix is empty.
void copyMat(bool inputUpper, ScalarType *inputMatrix, OrdinalType inputStride, OrdinalType numRowCols, bool outputUpper, ScalarType *outputMatrix, OrdinalType outputStride, OrdinalType startRowCol, ScalarType alpha=ScalarTraits< ScalarType >::zero())
ScalarType scalarType
Typedef for scalar type.