Tempus  Version of the Day
Time Integration
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Tempus_BDF2_ASA.cpp
Go to the documentation of this file.
1 //@HEADER
2 // *****************************************************************************
3 // Tempus: Time Integration and Sensitivity Analysis Package
4 //
5 // Copyright 2017 NTESS and the Tempus contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 //@HEADER
9 
12 #include "Teuchos_TimeMonitor.hpp"
13 #include "Teuchos_DefaultComm.hpp"
14 
15 #include "Tempus_config.hpp"
16 #include "Tempus_IntegratorBasic.hpp"
17 #include "Tempus_IntegratorAdjointSensitivity.hpp"
18 
19 #include "Thyra_VectorStdOps.hpp"
20 #include "Thyra_MultiVectorStdOps.hpp"
21 
22 #include "../TestModels/SinCosModel.hpp"
23 #include "../TestUtils/Tempus_ConvergenceTestUtils.hpp"
24 
25 #include "Thyra_DefaultMultiVectorProductVector.hpp"
26 
27 #include <fstream>
28 #include <limits>
29 #include <sstream>
30 #include <vector>
31 
32 namespace Tempus_Test {
33 
34 using Teuchos::getParametersFromXmlFile;
36 using Teuchos::RCP;
37 using Teuchos::sublist;
38 
42 
43 // ************************************************************
44 // ************************************************************
45 TEUCHOS_UNIT_TEST(BDF2, SinCos_ASA)
46 {
47  std::vector<double> StepSize;
48  std::vector<double> ErrorNorm;
49  const int nTimeStepSizes = 7;
50  double dt = 0.2;
51  double order = 0.0;
54  for (int n = 0; n < nTimeStepSizes; n++) {
55  // Read params from .xml file
56  RCP<ParameterList> pList =
57  getParametersFromXmlFile("Tempus_BDF2_SinCos_SA.xml");
58 
59  // Setup the SinCosModel
60  RCP<ParameterList> scm_pl = sublist(pList, "SinCosModel", true);
61  RCP<SinCosModel<double> > model =
62  Teuchos::rcp(new SinCosModel<double>(scm_pl));
63 
64  dt /= 2;
65 
66  // Setup sensitivities
67  RCP<ParameterList> pl = sublist(pList, "Tempus", true);
68  // ParameterList& sens_pl = pl->sublist("Sensitivities");
69  ParameterList& interp_pl = pl->sublist("Default Integrator")
70  .sublist("Solution History")
71  .sublist("Interpolator");
72  interp_pl.set("Interpolator Type", "Lagrange");
73  interp_pl.set("Order", 1);
74 
75  // Setup the Integrator and reset initial time step
76  pl->sublist("Default Integrator")
77  .sublist("Time Step Control")
78  .set("Initial Time Step", dt);
80  Tempus::createIntegratorAdjointSensitivity<double>(pl, model);
81  order = integrator->getStepper()->getOrder();
82 
83  // Initial Conditions
84  double t0 = pl->sublist("Default Integrator")
85  .sublist("Time Step Control")
86  .get<double>("Initial Time");
88  model->getExactSolution(t0).get_x();
89  const int num_param = model->get_p_space(0)->dim();
91  Thyra::createMembers(model->get_x_space(), num_param);
92  for (int i = 0; i < num_param; ++i)
93  Thyra::assign(DxDp0->col(i).ptr(),
94  *(model->getExactSensSolution(i, t0).get_x()));
95  integrator->initializeSolutionHistory(t0, x0, Teuchos::null, Teuchos::null,
96  DxDp0, Teuchos::null, Teuchos::null);
97 
98  // Integrate to timeMax
99  bool integratorStatus = integrator->advanceTime();
100  TEST_ASSERT(integratorStatus)
101 
102  // Test if at 'Final Time'
103  double time = integrator->getTime();
104  double timeFinal = pl->sublist("Default Integrator")
105  .sublist("Time Step Control")
106  .get<double>("Final Time");
107  TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
108 
109  // Time-integrated solution and the exact solution along with
110  // sensitivities (relying on response g(x) = x). Note we must transpose
111  // dg/dp since the integrator returns it in gradient form.
112  RCP<const Thyra::VectorBase<double> > x = integrator->getX();
113  RCP<const Thyra::MultiVectorBase<double> > DgDp = integrator->getDgDp();
115  Thyra::createMembers(model->get_x_space(), num_param);
116  {
119  const int num_g = DgDp->domain()->dim();
120  for (int i = 0; i < num_g; ++i)
121  for (int j = 0; j < num_param; ++j) dxdp_view(i, j) = dgdp_view(j, i);
122  }
124  model->getExactSolution(time).get_x();
126  Thyra::createMembers(model->get_x_space(), num_param);
127  for (int i = 0; i < num_param; ++i)
128  Thyra::assign(DxDp_exact->col(i).ptr(),
129  *(model->getExactSensSolution(i, time).get_x()));
130 
131  // Plot sample solution and exact solution
132  if (comm->getRank() == 0 && n == nTimeStepSizes - 1) {
135 
136  std::ofstream ftmp("Tempus_BDF2_SinCos_AdjSens.dat");
137  RCP<const SolutionHistory<double> > solutionHistory =
138  integrator->getSolutionHistory();
139  for (int i = 0; i < solutionHistory->getNumStates(); i++) {
140  RCP<const SolutionState<double> > solutionState = (*solutionHistory)[i];
141  const double time_i = solutionState->getTime();
142  RCP<const DPV> x_prod_plot =
143  Teuchos::rcp_dynamic_cast<const DPV>(solutionState->getX());
145  x_prod_plot->getVectorBlock(0);
146  RCP<const DMVPV> adjoint_prod_plot =
147  Teuchos::rcp_dynamic_cast<const DMVPV>(
148  x_prod_plot->getVectorBlock(1));
150  adjoint_prod_plot->getMultiVector();
151  RCP<const Thyra::VectorBase<double> > x_exact_plot =
152  model->getExactSolution(time_i).get_x();
153  ftmp << std::fixed << std::setprecision(7) << time_i << std::setw(11)
154  << get_ele(*(x_plot), 0) << std::setw(11) << get_ele(*(x_plot), 1)
155  << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 0)
156  << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 1)
157  << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 0)
158  << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 1)
159  << std::setw(11) << get_ele(*(x_exact_plot), 0) << std::setw(11)
160  << get_ele(*(x_exact_plot), 1) << std::endl;
161  }
162  ftmp.close();
163  }
164 
165  // Calculate the error
166  RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
167  RCP<Thyra::MultiVectorBase<double> > DxDpdiff = DxDp->clone_mv();
168  Thyra::V_StVpStV(xdiff.ptr(), 1.0, *x_exact, -1.0, *(x));
169  Thyra::V_VmV(DxDpdiff.ptr(), *DxDp_exact, *DxDp);
170  StepSize.push_back(dt);
171  double L2norm = Thyra::norm_2(*xdiff);
172  L2norm *= L2norm;
173  Teuchos::Array<double> L2norm_DxDp(num_param);
174  Thyra::norms_2(*DxDpdiff, L2norm_DxDp());
175  for (int i = 0; i < num_param; ++i)
176  L2norm += L2norm_DxDp[i] * L2norm_DxDp[i];
177  L2norm = std::sqrt(L2norm);
178  ErrorNorm.push_back(L2norm);
179 
180  // out << " n = " << n << " dt = " << dt << " error = " << L2norm
181  // << std::endl;
182  }
183 
184  // Check the order and intercept
185  double slope = computeLinearRegressionLogLog<double>(StepSize, ErrorNorm);
186  out << " Stepper = BDF2" << std::endl;
187  out << " =========================" << std::endl;
188  out << " Expected order: " << order << std::endl;
189  out << " Observed order: " << slope << std::endl;
190  out << " =========================" << std::endl;
191  TEST_FLOATING_EQUALITY(slope, 1.95006, 0.015);
192  TEST_FLOATING_EQUALITY(ErrorNorm[0], 0.0137394, 1.0e-4);
193 
194  if (comm->getRank() == 0) {
195  std::ofstream ftmp("Tempus_BDF2_SinCos_AdjSens-Error.dat");
196  double error0 = 0.8 * ErrorNorm[0];
197  for (int n = 0; n < nTimeStepSizes; n++) {
198  ftmp << StepSize[n] << " " << ErrorNorm[n] << " "
199  << error0 * (StepSize[n] / StepSize[0]) << std::endl;
200  }
201  ftmp.close();
202  }
203 }
204 
205 } // namespace Tempus_Test
#define TEST_FLOATING_EQUALITY(v1, v2, tol)
#define TEST_ASSERT(v1)
T * get() const
Sine-Cosine model problem from Rythmos. This is a canonical Sine-Cosine differential equation with a...
ParameterList & set(std::string const &name, T &&value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
static Teuchos::RCP< const Comm< OrdinalType > > getComm()
TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Ptr< T > ptr() const
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
ParameterList & sublist(const std::string &name, bool mustAlreadyExist=false, const std::string &docString="")
Solution state for integrators and steppers.