Tempus  Version of the Day
Time Integration
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Tempus_AdjointAuxSensitivityModelEvaluator_impl.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ****************************************************************************
3 // Tempus: Copyright (2017) Sandia Corporation
4 //
5 // Distributed under BSD 3-clause license (See accompanying file Copyright.txt)
6 // ****************************************************************************
7 // @HEADER
8 
9 #ifndef Tempus_AdjointAuxSensitivityModelEvaluator_impl_hpp
10 #define Tempus_AdjointAuxSensitivityModelEvaluator_impl_hpp
11 
16 #include "Thyra_DefaultBlockedLinearOp.hpp"
18 #include "Thyra_VectorStdOps.hpp"
19 #include "Thyra_MultiVectorStdOps.hpp"
20 
21 namespace Tempus {
22 
23 template <typename Scalar>
26  const Teuchos::RCP<const Thyra::ModelEvaluator<Scalar> >& model,
27  const Teuchos::RCP<const Thyra::ModelEvaluator<Scalar> >& adjoint_model,
28  const Scalar& t_init, const Scalar& t_final,
30  : model_(model),
31  adjoint_model_(adjoint_model),
32  t_init_(t_init),
33  t_final_(t_final),
34  mass_matrix_is_computed_(false),
35  t_interp_(Teuchos::ScalarTraits<Scalar>::rmax())
36 {
37  using Teuchos::Array;
38  using Teuchos::RCP;
40  typedef Thyra::ModelEvaluatorBase MEB;
41 
42  // Set parameters
45  if (pList != Teuchos::null) *pl = *pList;
47  mass_matrix_is_constant_ = pl->get<bool>("Mass Matrix Is Constant");
48  mass_matrix_is_identity_ = pl->get<bool>("Mass Matrix Is Identity");
49  p_index_ = pl->get<int>("Sensitivity Parameter Index", 0);
50  g_index_ = pl->get<int>("Response Function Index", 0);
51  num_adjoint_ = model_->get_g_space(g_index_)->dim();
52 
53  // We currently do not support a non-constant mass matrix
55  mass_matrix_is_constant_ == false, std::logic_error,
56  "AdjointAuxSensitivityModelEvaluator currently does not support "
57  << "non-constant mass matrix df/dx_dot!");
58 
60  Thyra::multiVectorProductVectorSpace(model_->get_f_space(), num_adjoint_);
62  Thyra::multiVectorProductVectorSpace(model_->get_x_space(), num_adjoint_);
63  response_space_ = Thyra::multiVectorProductVectorSpace(
64  model_->get_p_space(p_index_), num_adjoint_);
65  Array<RCP<const VectorSpaceBase<Scalar> > > x_spaces(2);
66  Array<RCP<const VectorSpaceBase<Scalar> > > f_spaces(2);
67  x_spaces[0] = adjoint_space_;
68  x_spaces[1] = response_space_;
69  f_spaces[0] = residual_space_;
70  f_spaces[1] = response_space_;
71  x_prod_space_ = Thyra::productVectorSpace(x_spaces());
72  f_prod_space_ = Thyra::productVectorSpace(f_spaces());
73 
74  // forward and adjoint models must support same InArgs
75  MEB::InArgs<Scalar> me_inArgs = model_->createInArgs();
76  me_inArgs.assertSameSupport(adjoint_model_->createInArgs());
77 
78  MEB::InArgsSetup<Scalar> inArgs;
79  inArgs.setModelEvalDescription(this->description());
80  inArgs.setSupports(MEB::IN_ARG_x);
81  inArgs.setSupports(MEB::IN_ARG_t);
82  if (me_inArgs.supports(MEB::IN_ARG_x_dot))
83  inArgs.setSupports(MEB::IN_ARG_x_dot);
84  inArgs.setSupports(MEB::IN_ARG_alpha);
85  inArgs.setSupports(MEB::IN_ARG_beta);
86 
87  // Support additional parameters for x and xdot
88  inArgs.set_Np(me_inArgs.Np());
89  prototypeInArgs_ = inArgs;
90 
91  MEB::OutArgs<Scalar> me_outArgs = model_->createOutArgs();
92  MEB::OutArgs<Scalar> adj_me_outArgs = adjoint_model_->createOutArgs();
93  MEB::OutArgsSetup<Scalar> outArgs;
94  outArgs.setModelEvalDescription(this->description());
95  outArgs.set_Np_Ng(me_inArgs.Np(), 0);
96  outArgs.setSupports(MEB::OUT_ARG_f);
97  outArgs.setSupports(MEB::OUT_ARG_W_op);
98  prototypeOutArgs_ = outArgs;
99 
100  // Adjoint ME must support W_op to define adjoint ODE/DAE.
101  // Must support alpha, beta if it suports x_dot
102  TEUCHOS_ASSERT(me_inArgs.supports(MEB::IN_ARG_x));
103  TEUCHOS_ASSERT(adj_me_outArgs.supports(MEB::OUT_ARG_W_op));
104  if (me_inArgs.supports(MEB::IN_ARG_x_dot)) {
105  TEUCHOS_ASSERT(me_inArgs.supports(MEB::IN_ARG_alpha));
106  TEUCHOS_ASSERT(me_inArgs.supports(MEB::IN_ARG_beta));
107  }
108 }
109 
110 template <typename Scalar>
112  const Scalar t_final)
113 {
114  t_final_ = t_final;
115 }
116 
117 template <typename Scalar>
120 {
121  sh_ = sh;
123  forward_state_ = Teuchos::null;
124 }
125 
126 template <typename Scalar>
129 {
130  TEUCHOS_ASSERT(p < model_->Np());
131  return model_->get_p_space(p);
132 }
133 
134 template <typename Scalar>
137 {
138  TEUCHOS_ASSERT(p < model_->Np());
139  return model_->get_p_names(p);
140 }
141 
142 template <typename Scalar>
145 {
146  return x_prod_space_;
147 }
148 
149 template <typename Scalar>
152 {
153  return f_prod_space_;
154 }
155 
156 template <typename Scalar>
159 {
160  using Teuchos::RCP;
161  using Thyra::LinearOpBase;
162 
163  RCP<LinearOpBase<Scalar> > adjoint_op = adjoint_model_->create_W_op();
164  RCP<LinearOpBase<Scalar> > mv_adjoint_op =
165  Thyra::nonconstMultiVectorLinearOp(adjoint_op, num_adjoint_);
166  RCP<const Thyra::VectorSpaceBase<Scalar> > g_space = response_space_;
167  RCP<LinearOpBase<Scalar> > g_op = Thyra::scaledIdentity(g_space, Scalar(1.0));
168  RCP<LinearOpBase<Scalar> > null_op;
169  return nonconstBlock2x2(mv_adjoint_op, null_op, null_op, g_op);
170 }
171 
172 template <typename Scalar>
175 {
176  using Teuchos::RCP;
177  using Teuchos::rcp_dynamic_cast;
179 
180  RCP<const LOWSFB> alowsfb = adjoint_model_->get_W_factory();
181  if (alowsfb == Teuchos::null)
182  return Teuchos::null; // model_ doesn't support W_factory
183 
184  RCP<const LOWSFB> mv_alowsfb = Thyra::multiVectorLinearOpWithSolveFactory(
185  alowsfb, residual_space_, adjoint_space_);
186 
187  RCP<const Thyra::VectorSpaceBase<Scalar> > g_space = response_space_;
188  RCP<const LOWSFB> g_lowsfb =
189  Thyra::scaledIdentitySolveFactory(g_space, Scalar(1.0));
190 
192  lowsfbs[0] = mv_alowsfb;
193  lowsfbs[1] = g_lowsfb;
194  return Thyra::blockedTriangularLinearOpWithSolveFactory(lowsfbs);
195 }
196 
197 template <typename Scalar>
200 {
201  return prototypeInArgs_;
202 }
203 
204 template <typename Scalar>
207 {
208  typedef Thyra::ModelEvaluatorBase MEB;
209  using Teuchos::RCP;
210  using Teuchos::rcp_dynamic_cast;
211 
212  MEB::InArgs<Scalar> me_nominal = model_->getNominalValues();
213  MEB::InArgs<Scalar> nominal = this->createInArgs();
214 
215  const Scalar zero = Teuchos::ScalarTraits<Scalar>::zero();
216 
217  // Set initial x, x_dot
218  RCP<Thyra::VectorBase<Scalar> > x = Thyra::createMember(*x_prod_space_);
219  Thyra::assign(x.ptr(), zero);
220  nominal.set_x(x);
221 
222  if (me_nominal.supports(MEB::IN_ARG_x_dot)) {
223  RCP<Thyra::VectorBase<Scalar> > x_dot = Thyra::createMember(*x_prod_space_);
224  Thyra::assign(x_dot.ptr(), zero);
225  nominal.set_x_dot(x_dot);
226  }
227 
228  const int np = model_->Np();
229  for (int i = 0; i < np; ++i) nominal.set_p(i, me_nominal.get_p(i));
230 
231  return nominal;
232 }
233 
234 template <typename Scalar>
237 {
238  return prototypeOutArgs_;
239 }
240 
241 template <typename Scalar>
244  const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
245 {
246  typedef Thyra::ModelEvaluatorBase MEB;
247  using Teuchos::RCP;
248  using Teuchos::rcp_dynamic_cast;
249 
250  // Note: adjoint_model computes the transposed W (either explicitly or
251  // implicitly. Thus we need to always call adjoint_model->evalModel()
252  // whenever computing the adjoint operator, and subsequent calls to apply()
253  // do not transpose it.
254 
255  // Interpolate forward solution at supplied time, reusing previous
256  // interpolation if possible
257  TEUCHOS_ASSERT(sh_ != Teuchos::null);
258  const Scalar t = inArgs.get_t();
259  const Scalar forward_t = t_final_ + t_init_ - t;
260  if (forward_state_ == Teuchos::null || t_interp_ != t) {
261  if (forward_state_ == Teuchos::null)
262  forward_state_ = sh_->interpolateState(forward_t);
263  else
264  sh_->interpolateState(forward_t, forward_state_.get());
265  t_interp_ = t;
266  }
267 
268  // setup input arguments for model
269  MEB::InArgs<Scalar> me_inArgs = model_->getNominalValues();
270  me_inArgs.set_x(forward_state_->getX());
271  if (me_inArgs.supports(MEB::IN_ARG_x_dot) &&
272  inArgs.get_x_dot() != Teuchos::null)
273  me_inArgs.set_x_dot(forward_state_->getXDot());
274  if (me_inArgs.supports(MEB::IN_ARG_t)) me_inArgs.set_t(forward_t);
275  const int np = me_inArgs.Np();
276  for (int i = 0; i < np; ++i) me_inArgs.set_p(i, inArgs.get_p(i));
277 
278  // compute W
279  RCP<Thyra::LinearOpBase<Scalar> > op = outArgs.get_W_op();
280  if (op != Teuchos::null) {
281  if (me_inArgs.supports(MEB::IN_ARG_alpha))
282  me_inArgs.set_alpha(inArgs.get_alpha());
283  if (me_inArgs.supports(MEB::IN_ARG_beta))
284  me_inArgs.set_beta(inArgs.get_beta());
285 
286  // Adjoint W
287  RCP<Thyra::DefaultBlockedLinearOp<Scalar> > block_op =
288  rcp_dynamic_cast<Thyra::DefaultBlockedLinearOp<Scalar> >(op, true);
289  RCP<Thyra::MultiVectorLinearOp<Scalar> > mv_adjoint_op =
290  rcp_dynamic_cast<Thyra::MultiVectorLinearOp<Scalar> >(
291  block_op->getNonconstBlock(0, 0), true);
292  RCP<Thyra::LinearOpBase<Scalar> > adjoint_op =
293  mv_adjoint_op->getNonconstLinearOp();
294  MEB::OutArgs<Scalar> adj_me_outArgs = adjoint_model_->createOutArgs();
295  adj_me_outArgs.set_W_op(adjoint_op);
296  adjoint_model_->evalModel(me_inArgs, adj_me_outArgs);
297 
298  // g W
299  RCP<Thyra::ScaledIdentityLinearOpWithSolve<Scalar> > si_op =
301  block_op->getNonconstBlock(1, 1), true);
302  si_op->setScale(inArgs.get_alpha());
303  }
304 
305  // Compute adjoint residual F(y):
306  // * For implicit form, F(y) = d/dt( df/dx_dot^T*y ) + df/dx^T*y
307  // * For explict form, F(y) = -df/dx^T*y
308  // For implicit form, we assume df/dx_dot is constant w.r.t. x, x_dot, and t,
309  // so the residual becomes F(y) = df/dx_dot^T*y_dot + df/dx^T*y
310  RCP<Thyra::VectorBase<Scalar> > f = outArgs.get_f();
311  if (f != Teuchos::null) {
312  RCP<const Thyra::VectorBase<Scalar> > x = inArgs.get_x().assert_not_null();
313  RCP<const DPV> prod_x = rcp_dynamic_cast<const DPV>(x, true);
314  RCP<const Thyra::VectorBase<Scalar> > adjoint_x = prod_x->getVectorBlock(0);
315  RCP<const Thyra::MultiVectorBase<Scalar> > adjoint_x_mv =
316  rcp_dynamic_cast<const DMVPV>(adjoint_x, true)->getMultiVector();
317 
318  RCP<DPV> prod_f = rcp_dynamic_cast<DPV>(f, true);
319  RCP<Thyra::VectorBase<Scalar> > adjoint_f =
320  prod_f->getNonconstVectorBlock(0);
321  RCP<Thyra::MultiVectorBase<Scalar> > adjoint_f_mv =
322  rcp_dynamic_cast<DMVPV>(adjoint_f, true)->getNonconstMultiVector();
323 
324  MEB::OutArgs<Scalar> adj_me_outArgs = adjoint_model_->createOutArgs();
325 
326  if (my_dfdx_ == Teuchos::null) my_dfdx_ = adjoint_model_->create_W_op();
327  adj_me_outArgs.set_W_op(my_dfdx_);
328  if (me_inArgs.supports(MEB::IN_ARG_alpha)) me_inArgs.set_alpha(0.0);
329  if (me_inArgs.supports(MEB::IN_ARG_beta)) me_inArgs.set_beta(1.0);
330  adjoint_model_->evalModel(me_inArgs, adj_me_outArgs);
331 
332  // Explicit form residual F(y) = -df/dx^T*y
333  my_dfdx_->apply(Thyra::NOTRANS, *adjoint_x_mv, adjoint_f_mv.ptr(),
334  Scalar(-1.0), Scalar(0.0));
335 
336  // Implicit form residual df/dx_dot^T*y_dot + df/dx^T*y using the second
337  // scalar argument to apply() to change the explicit term above
338  RCP<const DPV> prod_x_dot;
339  if (me_inArgs.supports(MEB::IN_ARG_x_dot)) {
340  RCP<const Thyra::VectorBase<Scalar> > x_dot = inArgs.get_x_dot();
341  if (x_dot != Teuchos::null) {
342  prod_x_dot = rcp_dynamic_cast<const DPV>(x_dot, true);
343  RCP<const Thyra::VectorBase<Scalar> > adjoint_x_dot =
344  prod_x_dot->getVectorBlock(0);
345  RCP<const Thyra::MultiVectorBase<Scalar> > adjoint_x_dot_mv =
346  rcp_dynamic_cast<const DMVPV>(adjoint_x_dot, true)
347  ->getMultiVector();
348  if (mass_matrix_is_identity_) {
349  // F = -F + y_dot
350  Thyra::V_StVpV(adjoint_f_mv.ptr(), Scalar(-1.0), *adjoint_f_mv,
351  *adjoint_x_dot_mv);
352  }
353  else {
354  if (my_dfdxdot_ == Teuchos::null)
355  my_dfdxdot_ = adjoint_model_->create_W_op();
356  if (!mass_matrix_is_constant_ || !mass_matrix_is_computed_) {
357  adj_me_outArgs.set_W_op(my_dfdxdot_);
358  me_inArgs.set_alpha(1.0);
359  me_inArgs.set_beta(0.0);
360  adjoint_model_->evalModel(me_inArgs, adj_me_outArgs);
361 
362  mass_matrix_is_computed_ = true;
363  }
364  my_dfdxdot_->apply(Thyra::NOTRANS, *adjoint_x_dot_mv,
365  adjoint_f_mv.ptr(), Scalar(1.0), Scalar(-1.0));
366  }
367  }
368  }
369 
370  // Compute g = z_dot - df/dp^T*y for computing the model parameter term
371  // in the adjoint sensitivity formula
372  RCP<Thyra::VectorBase<Scalar> > adjoint_g =
373  prod_f->getNonconstVectorBlock(1);
374  RCP<Thyra::MultiVectorBase<Scalar> > adjoint_g_mv =
375  rcp_dynamic_cast<DMVPV>(adjoint_g, true)->getNonconstMultiVector();
376 
377  MEB::OutArgs<Scalar> me_outArgs2 = model_->createOutArgs();
378  MEB::DerivativeSupport dfdp_support =
379  me_outArgs2.supports(MEB::OUT_ARG_DfDp, p_index_);
381  if (dfdp_support.supports(MEB::DERIV_LINEAR_OP)) {
382  if (my_dfdp_op_ == Teuchos::null)
383  my_dfdp_op_ = model_->create_DfDp_op(p_index_);
384  me_outArgs2.set_DfDp(p_index_, MEB::Derivative<Scalar>(my_dfdp_op_));
385  trans = Thyra::CONJTRANS;
386  }
387  else if (dfdp_support.supports(MEB::DERIV_MV_JACOBIAN_FORM)) {
388  if (my_dfdp_mv_ == Teuchos::null)
389  my_dfdp_mv_ = createMembers(model_->get_f_space(),
390  model_->get_p_space(p_index_)->dim());
391  me_outArgs2.set_DfDp(
392  p_index_,
393  MEB::Derivative<Scalar>(my_dfdp_mv_, MEB::DERIV_MV_JACOBIAN_FORM));
394  my_dfdp_op_ = my_dfdp_mv_;
395  trans = Thyra::CONJTRANS;
396  }
397  else if (dfdp_support.supports(MEB::DERIV_MV_GRADIENT_FORM)) {
398  if (my_dfdp_mv_ == Teuchos::null)
399  my_dfdp_mv_ = createMembers(model_->get_p_space(p_index_),
400  model_->get_f_space()->dim());
401  me_outArgs2.set_DfDp(
402  p_index_,
403  MEB::Derivative<Scalar>(my_dfdp_mv_, MEB::DERIV_MV_GRADIENT_FORM));
404  my_dfdp_op_ = my_dfdp_mv_;
405  trans = Thyra::CONJ;
406  }
407  else
408  TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error,
409  "Invalid df/dp support");
410  model_->evalModel(me_inArgs, me_outArgs2);
411  my_dfdp_op_->apply(trans, *adjoint_x_mv, adjoint_g_mv.ptr(), Scalar(1.0),
412  Scalar(0.0));
413 
414  if (prod_x_dot != Teuchos::null) {
415  RCP<const Thyra::VectorBase<Scalar> > z_dot =
416  prod_x_dot->getVectorBlock(1);
417  RCP<const Thyra::MultiVectorBase<Scalar> > z_dot_mv =
418  rcp_dynamic_cast<const DMVPV>(z_dot, true)->getMultiVector();
419  Thyra::V_VmV(adjoint_g_mv.ptr(), *z_dot_mv, *adjoint_g_mv);
420  }
421  }
422 }
423 
424 template <class Scalar>
427 {
428  Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
429  pl->set<int>("Sensitivity Parameter Index", 0);
430  pl->set<int>("Response Function Index", 0);
431  pl->set<bool>("Mass Matrix Is Constant", true);
432  pl->set<bool>("Mass Matrix Is Identity", false);
433  return pl;
434 }
435 
436 } // namespace Tempus
437 
438 #endif
Teuchos::RCP< const Thyra::LinearOpWithSolveFactoryBase< Scalar > > get_W_factory() const
Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > adjoint_model_
Implicit concrete LinearOpBase subclass that takes a flattended out multi-vector and performs a multi...
EOpTransp
RCP< const VectorBase< Scalar > > get_x_dot() const
void evalModelImpl(const Thyra::ModelEvaluatorBase::InArgs< Scalar > &inArgs, const Thyra::ModelEvaluatorBase::OutArgs< Scalar > &outArgs) const
static Teuchos::RCP< const Teuchos::ParameterList > getValidParameters()
T & get(const std::string &name, T def_value)
RCP< const VectorBase< Scalar > > getVectorBlock(const int k) const
ParameterList & set(std::string const &name, T const &value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
Teuchos::RCP< Thyra::LinearOpBase< Scalar > > create_W_op() const
RCP< LinearOpBase< Scalar > > getNonconstLinearOp()
Evaluation< VectorBase< Scalar > > get_f() const
Thyra::ModelEvaluatorBase::InArgs< Scalar > createInArgs() const
Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > get_x_space() const
static magnitudeType rmax()
Teuchos::RCP< const Teuchos::Array< std::string > > get_p_names(int p) const
Thyra::ModelEvaluatorBase::InArgs< Scalar > getNominalValues() const
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Thyra::ModelEvaluatorBase::OutArgs< Scalar > createOutArgsImpl() const
virtual std::string description() const
void validateParametersAndSetDefaults(ParameterList const &validParamList, int const depth=1000)
Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > get_f_space() const
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
void setForwardSolutionHistory(const Teuchos::RCP< const Tempus::SolutionHistory< Scalar > > &sh)
Set solution history from forward evaluation.
RCP< VectorBase< Scalar > > getNonconstVectorBlock(const int k)
Implicit concrete LinearOpBase subclass that takes a flattended out multi-vector and performs a multi...
Teuchos::RCP< const Thyra::VectorSpaceBase< Scalar > > get_p_space(int p) const
AdjointAuxSensitivityModelEvaluator(const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &model, const Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > &adjoint_model, const Scalar &t_init, const Scalar &t_final, const Teuchos::RCP< const Teuchos::ParameterList > &pList=Teuchos::null)
Constructor.
#define TEUCHOS_ASSERT(assertion_test)
Teuchos::RCP< const Thyra::ModelEvaluator< Scalar > > model_
RCP< LinearOpBase< Scalar > > get_W_op() const
RCP< const VectorBase< Scalar > > get_x() const
void setFinalTime(const Scalar t_final)
Set the final time from the forward evaluation.
RCP< const VectorBase< Scalar > > get_p(int l) const