Stokhos  Development
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Public Types | Public Member Functions | Static Public Member Functions | List of all members
Stokhos::StochasticProductTensor< ValueType, TensorType, Device > Class Template Reference

Bases defined by combinatorial product of polynomial bases. More...

#include <Stokhos_StochasticProductTensor.hpp>

Public Types

typedef Device execution_space
 
typedef ValueType value_type
 
typedef TensorType tensor_type
 
typedef tensor_type::size_type size_type
 

Public Member Functions

 StochasticProductTensor (const StochasticProductTensor &rhs)
 
StochasticProductTensoroperator= (const StochasticProductTensor &rhs)
 
KOKKOS_INLINE_FUNCTION const
tensor_type & 
tensor () const
 
KOKKOS_INLINE_FUNCTION size_type dimension () const
 Dimension: number of bases and length of the vector block (and tensor).
 
KOKKOS_INLINE_FUNCTION size_type aligned_dimension () const
 Aligned dimension: length of the vector block properly aligned.
 
KOKKOS_INLINE_FUNCTION size_type variable_count () const
 How many variables are being expanded.
 
template<typename iType >
KOKKOS_INLINE_FUNCTION size_type variable_degree (const iType &iVariable) const
 Polynomial degree of a given variable.
 
template<typename iType , typename jType >
KOKKOS_INLINE_FUNCTION size_type bases_degree (const iType &iBasis, const jType &iVariable) const
 Basis function 'iBasis' is the product of 'variable_count()' polynomials. Return the polynomial degree of component 'iVariable'.
 
void print (std::ostream &s) const
 

Static Public Member Functions

template<typename OrdinalType , typename CijkType >
static StochasticProductTensor create (const Stokhos::ProductBasis< OrdinalType, ValueType > &basis, const CijkType &Cijk, const Teuchos::ParameterList &params=Teuchos::ParameterList())
 

Detailed Description

template<typename ValueType, typename TensorType, class Device>
class Stokhos::StochasticProductTensor< ValueType, TensorType, Device >

Bases defined by combinatorial product of polynomial bases.

Bases: {j=0}^{N-1} P_k(x) j and k M(j) Where: P_k is a polynomial of degree k Where: <P_a,P_b> is the the integral on [-1,1] Where: <P_a,P_b> is the Kronecker delta {a,b} thus the polynomials are normalized with respect to this inner product.

Where: N = the number of variables expanded via polynomial bases Where: M(j) = the degree of a particular variable

Where: (x) = is one basis function and I is a multi-index of rank N, denoting one function from each variable's polynomial bases.

Were: <,,> is the integral on [-1,1]

The bases space is sparse due to orthogonality within the expansion.


The documentation for this class was generated from the following file: