Stokhos
Development
|
Bases defined by combinatorial product of polynomial bases. More...
#include <Stokhos_StochasticProductTensor.hpp>
Public Types | |
typedef Device | execution_space |
typedef ValueType | value_type |
typedef TensorType | tensor_type |
typedef tensor_type::size_type | size_type |
Public Member Functions | |
StochasticProductTensor (const StochasticProductTensor &rhs) | |
StochasticProductTensor & | operator= (const StochasticProductTensor &rhs) |
KOKKOS_INLINE_FUNCTION const tensor_type & | tensor () const |
KOKKOS_INLINE_FUNCTION size_type | dimension () const |
Dimension: number of bases and length of the vector block (and tensor). | |
KOKKOS_INLINE_FUNCTION size_type | aligned_dimension () const |
Aligned dimension: length of the vector block properly aligned. | |
KOKKOS_INLINE_FUNCTION size_type | variable_count () const |
How many variables are being expanded. | |
template<typename iType > | |
KOKKOS_INLINE_FUNCTION size_type | variable_degree (const iType &iVariable) const |
Polynomial degree of a given variable. | |
template<typename iType , typename jType > | |
KOKKOS_INLINE_FUNCTION size_type | bases_degree (const iType &iBasis, const jType &iVariable) const |
Basis function 'iBasis' is the product of 'variable_count()' polynomials. Return the polynomial degree of component 'iVariable'. | |
void | print (std::ostream &s) const |
Static Public Member Functions | |
template<typename OrdinalType , typename CijkType > | |
static StochasticProductTensor | create (const Stokhos::ProductBasis< OrdinalType, ValueType > &basis, const CijkType &Cijk, const Teuchos::ParameterList ¶ms=Teuchos::ParameterList()) |
Bases defined by combinatorial product of polynomial bases.
Bases: {j=0}^{N-1} P_k(x) j and k M(j) Where: P_k is a polynomial of degree k Where: <P_a,P_b> is the the integral on [-1,1] Where: <P_a,P_b> is the Kronecker delta {a,b} thus the polynomials are normalized with respect to this inner product.
Where: N = the number of variables expanded via polynomial bases Where: M(j) = the degree of a particular variable
Where: (x) = is one basis function and I is a multi-index of rank N, denoting one function from each variable's polynomial bases.
Were: <,,> is the integral on [-1,1]
The bases space is sparse due to orthogonality within the expansion.