Stokhos
Development
|
Utilities for indexing a multi-variate complete polynomial basis. More...
#include <Stokhos_ProductBasisUtils.hpp>
Classes | |
struct | Cijk_1D_Iterator |
Static Public Member Functions | |
template<typename index_set_type , typename growth_rule_type , typename basis_set_type , typename basis_map_type > | |
static void | buildProductBasis (const index_set_type &index_set, const growth_rule_type &growth_rule, basis_set_type &basis_set, basis_map_type &basis_map) |
Generate a product basis from an index set. | |
template<typename index_set_type , typename basis_set_type , typename basis_map_type > | |
static void | buildProductBasis (const index_set_type &index_set, basis_set_type &basis_set, basis_map_type &basis_map) |
Generate a product basis from an index set. | |
template<typename ordinal_type , typename value_type , typename basis_set_type , typename basis_map_type , typename coeff_predicate_type , typename k_coeff_predicate_type > | |
static Teuchos::RCP < Stokhos::Sparse3Tensor < ordinal_type, value_type > > | computeTripleProductTensor (const Teuchos::Array< Teuchos::RCP< const OneDOrthogPolyBasis< ordinal_type, value_type > > > &bases, const basis_set_type &basis_set, const basis_map_type &basis_map, const coeff_predicate_type &coeff_pred, const k_coeff_predicate_type &k_coeff_pred, const value_type sparse_tol=1.0e-12) |
template<typename ordinal_type , typename value_type , typename basis_set_type , typename basis_map_type , typename coeff_predicate_type , typename k_coeff_predicate_type > | |
static Teuchos::RCP < Stokhos::Sparse3Tensor < ordinal_type, value_type > > | computeTripleProductTensorNew (const Teuchos::Array< Teuchos::RCP< const OneDOrthogPolyBasis< ordinal_type, value_type > > > &bases, const basis_set_type &basis_set, const basis_map_type &basis_map, const coeff_predicate_type &coeff_pred, const k_coeff_predicate_type &k_coeff_pred, bool symmetric=false, const value_type sparse_tol=1.0e-12) |
Utilities for indexing a multi-variate complete polynomial basis.
This version allows specification of a growth rule for each dimension allowing the coefficient order to be a function of the corresponding index.