Stokhos
Development
|
Generate a basis from a given set of PCE expansions that is orthogonal with respect to the product measure induced by these expansions. More...
#include <Stokhos_MonomialProjGramSchmidtPCEBasis2.hpp>
Public Member Functions | |
MonomialProjGramSchmidtPCEBasis2 (ordinal_type p, const Teuchos::Array< Stokhos::OrthogPolyApprox< ordinal_type, value_type > > &pce, const Teuchos::RCP< const Stokhos::Quadrature< ordinal_type, value_type > > &quad, const Teuchos::ParameterList ¶ms=Teuchos::ParameterList()) | |
Constructor. More... | |
virtual | ~MonomialProjGramSchmidtPCEBasis2 () |
Destructor. | |
Implementation of Stokhos::OrthogPolyBasis methods | |
ordinal_type | order () const |
Return order of basis. | |
ordinal_type | dimension () const |
Return dimension of basis. | |
virtual ordinal_type | size () const |
Return total size of basis. | |
virtual const Teuchos::Array < value_type > & | norm_squared () const |
Return array storing norm-squared of each basis polynomial. More... | |
virtual const value_type & | norm_squared (ordinal_type i) const |
Return norm squared of basis polynomial i . | |
virtual Teuchos::RCP < Stokhos::Sparse3Tensor < ordinal_type, value_type > > | computeTripleProductTensor () const |
Compute triple product tensor. More... | |
virtual Teuchos::RCP < Stokhos::Sparse3Tensor < ordinal_type, value_type > > | computeLinearTripleProductTensor () const |
Compute linear triple product tensor where k = 0,1,..,d. | |
virtual value_type | evaluateZero (ordinal_type i) const |
Evaluate basis polynomial i at zero. | |
virtual void | evaluateBases (const Teuchos::ArrayView< const value_type > &point, Teuchos::Array< value_type > &basis_vals) const |
Evaluate basis polynomials at given point point . More... | |
virtual const std::string & | getName () const |
Return string name of basis. | |
virtual void | print (std::ostream &os) const |
Print basis to stream os . | |
Implementation of Stokhos::ReducedPCEBasis methods | |
virtual void | transformToOriginalBasis (const value_type *in, value_type *out, ordinal_type ncol=1, bool transpose=false) const |
Transform coefficients to original basis from this basis. | |
virtual void | transformFromOriginalBasis (const value_type *in, value_type *out, ordinal_type ncol=1, bool transpose=false) const |
Transform coefficients from original basis to this basis. | |
virtual Teuchos::RCP< const Stokhos::Quadrature < ordinal_type, value_type > > | getReducedQuadrature () const |
Get reduced quadrature object. | |
Public Member Functions inherited from Stokhos::ReducedPCEBasis< ordinal_type, value_type > | |
ReducedPCEBasis () | |
Default constructor. | |
virtual | ~ReducedPCEBasis () |
Destructor. | |
Public Member Functions inherited from Stokhos::OrthogPolyBasis< ordinal_type, value_type > | |
OrthogPolyBasis () | |
Constructor. | |
virtual | ~OrthogPolyBasis () |
Destructor. | |
Protected Types | |
typedef Stokhos::CompletePolynomialBasisUtils < ordinal_type, value_type > | CPBUtils |
typedef Teuchos::SerialDenseVector < ordinal_type, value_type > | SDV |
typedef Teuchos::SerialDenseMatrix < ordinal_type, value_type > | SDM |
Protected Member Functions | |
ordinal_type | buildQ (ordinal_type max_p, value_type threshold, const Teuchos::Array< Stokhos::OrthogPolyApprox< ordinal_type, value_type > > &pce, const Teuchos::RCP< const Stokhos::Quadrature< ordinal_type, value_type > > &quad, Teuchos::Array< Stokhos::MultiIndex< ordinal_type > > &terms_, Teuchos::Array< ordinal_type > &num_terms_, Teuchos::SerialDenseMatrix< ordinal_type, value_type > &Qp_, Teuchos::SerialDenseMatrix< ordinal_type, value_type > &A_, Teuchos::SerialDenseMatrix< ordinal_type, value_type > &F_) |
Build the reduced basis, parameterized by total order max_p . More... | |
Protected Attributes | |
std::string | name |
Name of basis. | |
Teuchos::ParameterList | params |
Algorithm parameters. | |
Teuchos::RCP< const Stokhos::OrthogPolyBasis < ordinal_type, value_type > > | pce_basis |
Original pce basis. | |
ordinal_type | pce_sz |
Size of original pce basis. | |
ordinal_type | p |
Total order of basis. | |
ordinal_type | d |
Total dimension of basis. | |
ordinal_type | sz |
Total size of basis. | |
Teuchos::Array < Stokhos::MultiIndex < ordinal_type > > | terms |
2-D array of basis terms | |
Teuchos::Array< ordinal_type > | num_terms |
Number of terms up to each order. | |
Teuchos::Array< value_type > | norms |
Norms. | |
SDM | Q |
Values of transformed basis at quadrature points. | |
SDM | Qp |
Coefficients of transformed basis in original basis. | |
Teuchos::RCP< const Stokhos::Quadrature < ordinal_type, value_type > > | reduced_quad |
Reduced quadrature object. | |
bool | verbose |
Whether to print a bunch of stuff out. | |
value_type | rank_threshold |
Rank threshold. | |
std::string | orthogonalization_method |
Orthogonalization method. | |
Teuchos::BLAS< ordinal_type, value_type > | blas |
Generate a basis from a given set of PCE expansions that is orthogonal with respect to the product measure induced by these expansions.
Given the PCE expansions, first build a non-orthogonal monomial basis. Orthogonalize this basis using Gram-Schmidt, then build a quadrature rule using the simplex method.
Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::MonomialProjGramSchmidtPCEBasis2 | ( | ordinal_type | p, |
const Teuchos::Array< Stokhos::OrthogPolyApprox< ordinal_type, value_type > > & | pce, | ||
const Teuchos::RCP< const Stokhos::Quadrature< ordinal_type, value_type > > & | quad, | ||
const Teuchos::ParameterList & | params = Teuchos::ParameterList() |
||
) |
Constructor.
p | order of the basis |
pce | polynomial chaos expansions defining new measure |
quad | quadrature data for basis defining pce |
Cijk | sparse triple product tensor for basis defining pce |
sparse_tol | tolerance for dropping terms in sparse tensors |
References Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::buildQ(), Stokhos::ReducedQuadratureFactory< ordinal_type, value_type >::createReducedQuadrature(), Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::d, Stokhos::OrthogPolyBasis< ordinal_type, value_type >::dimension(), Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::norms, Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::num_terms, Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::params, Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::pce_basis, Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::Q, Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::Qp, Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::rank_threshold, Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::reduced_quad, Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::sz, and Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::terms.
|
protected |
Build the reduced basis, parameterized by total order max_p
.
Returns resulting size of reduced basis
Referenced by Stokhos::MonomialProjGramSchmidtPCEBasis2< ordinal_type, value_type >::MonomialProjGramSchmidtPCEBasis2().
|
virtual |
Compute triple product tensor.
The entry of the tensor is given by where represents basis polynomial and where is size()-1.
Implements Stokhos::OrthogPolyBasis< ordinal_type, value_type >.
|
virtual |
Evaluate basis polynomials at given point point
.
Size of returned array is given by size(), and coefficients are ordered from order 0 up to size size()-1.
Implements Stokhos::OrthogPolyBasis< ordinal_type, value_type >.
|
virtual |
Return array storing norm-squared of each basis polynomial.
Entry of returned array is given by for where is size()-1.
Implements Stokhos::OrthogPolyBasis< ordinal_type, value_type >.