Stokhos
Development
|
Class representing an exponential covariance function and its KL eigevalues/eigenfunctions. More...
#include <Stokhos_KL_OneDExponentialCovarianceFunction.hpp>
Classes | |
struct | EigFuncCos |
Nonlinear function whose roots define eigenvalues for cos() eigenfunction. More... | |
struct | EigFuncSin |
Nonlinear function whose roots define eigenvalues for sin() eigenfunction. More... | |
Public Types | |
typedef ExponentialOneDEigenFunction < value_type > | eigen_function_type |
typedef OneDEigenPair < eigen_function_type > | eigen_pair_type |
Public Member Functions | |
OneDExponentialCovarianceFunction (int M, const value_type &a, const value_type &b, const value_type &L, const int dim_name, Teuchos::ParameterList &solverParams) | |
Constructor. | |
~OneDExponentialCovarianceFunction () | |
Destructor. | |
value_type | evaluateCovariance (const value_type &x, const value_type &xp) const |
Evaluate covariance. | |
const Teuchos::Array < eigen_pair_type > & | getEigenPairs () const |
Get eigenpairs. | |
Protected Types | |
typedef Teuchos::ScalarTraits < value_type >::magnitudeType | magnitude_type |
Protected Member Functions | |
template<class Func > | |
value_type | newton (const Func &func, const value_type &a, const value_type &b, magnitude_type tol, int max_num_its) |
A basic root finder based on Newton's method. | |
template<class Func > | |
value_type | bisection (const Func &func, const value_type &a, const value_type &b, magnitude_type tol, int max_num_its) |
A basic root finder based on bisection. | |
Protected Attributes | |
value_type | L |
Correlation length. | |
Teuchos::Array< eigen_pair_type > | eig_pair |
Eigenpairs. | |
Class representing an exponential covariance function and its KL eigevalues/eigenfunctions.
This class provides the exponential covariance function
The corresponding eigenfunctions can be shown to be and for where and satisfy
and
respectively, where and . Then
and the corresponding eigenvalues are given by
and
It is straightforward to show that for each , , and thus . Hence when sorted on decreasing eigenvalue, the eigenfunctions alternate between cosine and sine. See "Stochastic Finite Elements" by Ghanem and Spanos for a complete description of how to derive these relationships.
For a given value of , the code works by computing the eigenfunctions using a bisection root solver to compute the frequencies and .
Data for the root solver is passed through a Teuchos::ParameterList, which accepts the following parameters: