29     return exp(-1/(1-
pow(2*(x+2),2)));
 
   30   }
else if(2*
fabs(x-2)<1){
 
   31     return exp(-1/(1-
pow(2*(x-2),2)));
 
   41     const double leftEndPt = -3;
 
   42     const double rightEndPt = 3;
 
   52     norm_sq = basis->norm_squared();
 
   53     basis->getRecurrenceCoefficients(alpha, beta, delta, gamma);
 
   56     for(
int i = 0; i<p; i++){
 
   57       std::cout << 
"alpha[" << i <<
"]= " << alpha[i] << 
"     beta[" << i <<
"]= " << beta[i] << 
"      gamma[" << i <<
"]= " << gamma[i] << 
"\n";
 
   60     for(
int i = 0; i<=p; i++){
 
   61       std::cout << 
"E(P_"<<i<<
"^2) = "<< norm_sq[i] <<
"\n";
 
   67     basis->getQuadPoints(20, quad_points, quad_weights, quad_values);
 
   68     for(
int i = 0; i<quad_points.
size(); i++){
 
   69       std::cout << 
"x_i = "<<quad_points[i]<<
" w_i = "<< quad_weights[i] <<
" " << i << 
" / " << quad_points.
size()<< 
"\n";
 
   72     double maxOffDiag = 0;
 
   73     double currentInnerProduct;
 
   74     for(
int i = 0; i<=p; i++){
 
   75       for(
int j = 0; 
j<i; 
j++){
 
   76         currentInnerProduct = 
fabs(basis->eval_inner_product(i, 
j));
 
   77         if(currentInnerProduct > maxOffDiag){
 
   78           maxOffDiag = currentInnerProduct;
 
   82     std::cout<<
"Maximum Off Diagonal Inner Product is: " << maxOffDiag << 
"\n"; 
 
   85   catch (std::exception& e) {
 
   86     std::cout << e.what() << std::endl;
 
KOKKOS_INLINE_FUNCTION PCE< Storage > fabs(const PCE< Storage > &a)
 
Generates three-term recurrence using the Discretized Stieltjes procedure. 
 
KOKKOS_INLINE_FUNCTION PCE< Storage > pow(const PCE< Storage > &a, const PCE< Storage > &b)
 
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
 
double weightFunction(const double &x)
 
KOKKOS_INLINE_FUNCTION PCE< Storage > exp(const PCE< Storage > &a)
 
int main(int argc, char **argv)