18 namespace PseudoSpectralExpansionUnitTest {
22 template <
typename OrdinalType,
typename ValueType>
33 Stokhos::OrthogPolyApprox<OrdinalType,ValueType> x,
y,
u,
u2,
cx,
cu,
cu2,
sx,
su,
su2;
42 const OrdinalType d = 2;
43 const OrdinalType p = 7;
47 for (OrdinalType i=0; i<d; i++)
64 Cijk =
basis->computeTripleProductTensor();
87 for (OrdinalType i=0; i<d; i++) {
92 for (OrdinalType i=0; i<d; i++)
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > y
Teuchos::RCP< Stokhos::PseudoSpectralOrthogPolyExpansion< OrdinalType, ValueType > > exp_linear
Teuchos::RCP< const product_basis_type > basis
Stokhos::TensorProductBasis< OrdinalType, ValueType > product_basis_type
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > u
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > u2
Teuchos::RCP< const Stokhos::Quadrature< OrdinalType, ValueType > > quad
UnitTestSetup< int, double > setup
Teuchos::RCP< Stokhos::Sparse3Tensor< int, double > > Cijk
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > sx
static int runUnitTestsFromMain(int argc, char *argv[])
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > su
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
void reset(const Teuchos::RCP< const Stokhos::OrthogPolyBasis< ordinal_type, value_type > > &new_basis, ordinal_type sz=0)
Reset to a new basis.
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > cx
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > cu
Multivariate orthogonal polynomial basis generated from a tensor product of univariate polynomials...
int main(int argc, char **argv)
Teuchos::RCP< Stokhos::Sparse3Tensor< int, double > > Cijk_linear
Teuchos::RCP< const Stokhos::PseudoSpectralOperator< OrdinalType, ValueType > > ps_op
Stokhos::TotalOrderBasis< OrdinalType, ValueType > product_basis_type
An operator for building pseudo-spectral coefficients using tensor-product quadrature.
Teuchos::RCP< Stokhos::PseudoSpectralOrthogPolyExpansion< OrdinalType, ValueType > > exp
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > su2
Defines quadrature for a tensor product basis by tensor products of 1-D quadrature rules...
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > cu2
Stokhos::OrthogPolyApprox< OrdinalType, ValueType > x
reference term(ordinal_type dimension, ordinal_type order)
Get coefficient term for given dimension and order.