12 template <
typename value_type>
26 int max_it = solverParams.
get(
"Maximum Nonlinear Solver Iterations", 100);
38 lambda = 2.0*
L/(
L*
L*omega*omega + 1.0);
46 lambda = 2.0*
L/(
L*
L*omega*omega + 1.0);
57 lambda = 2.0*
L/(
L*
L*omega*omega + 1.0);
64 template <
typename value_type>
76 std::cout <<
"u = " << u <<
" f = " << f << std::endl;
83 "Nonlinear solver did not converge!" << std::endl);
88 template <
typename value_type>
99 "Bounds [" << a <<
"," << b <<
"] must bracket the root!" << std::endl <<
100 "f(a) = " << fa <<
", f(b) = " << fb << std::endl)
122 u = low + (hi - low)/2.0;
127 "Nonlinear solver did not converge!" << std::endl);
Teuchos::Array< eigen_pair_type > eig_pair
Eigenpairs.
value_type bisection(const Func &func, const value_type &a, const value_type &b, magnitude_type tol, int max_num_its)
A basic root finder based on bisection.
T & get(ParameterList &l, const std::string &name)
value_type newton(const Func &func, const value_type &a, const value_type &b, magnitude_type tol, int max_num_its)
A basic root finder based on Newton's method.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
OneDExponentialCovarianceFunction(int M, const value_type &a, const value_type &b, const value_type &L, const int dim_name, Teuchos::ParameterList &solverParams)
Constructor.
Nonlinear function whose roots define eigenvalues for cos() eigenfunction.
Nonlinear function whose roots define eigenvalues for sin() eigenfunction.
KOKKOS_INLINE_FUNCTION PCE< Storage > atan(const PCE< Storage > &a)
Teuchos::ScalarTraits< value_type >::magnitudeType magnitude_type
ScalarType f(const Teuchos::Array< ScalarType > &x, double a, double b)
One-dimensional eigenfunction for exponential covariance function.
value_type L
Correlation length.