Sacado Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gmock-matchers.cc
Go to the documentation of this file.
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // This file implements Matcher<const string&>, Matcher<string>, and
33 // utilities for defining matchers.
34 
35 #include "gmock/gmock-matchers.h"
36 
37 #include <string.h>
38 
39 #include <iostream>
40 #include <sstream>
41 #include <string>
42 #include <vector>
43 
44 namespace testing {
45 namespace internal {
46 
47 // Returns the description for a matcher defined using the MATCHER*()
48 // macro where the user-supplied description string is "", if
49 // 'negation' is false; otherwise returns the description of the
50 // negation of the matcher. 'param_values' contains a list of strings
51 // that are the print-out of the matcher's parameters.
53  bool negation, const char* matcher_name,
54  const std::vector<const char*>& param_names, const Strings& param_values) {
55  std::string result = ConvertIdentifierNameToWords(matcher_name);
56  if (!param_values.empty()) {
57  result += " " + JoinAsKeyValueTuple(param_names, param_values);
58  }
59  return negation ? "not (" + result + ")" : result;
60 }
61 
62 // FindMaxBipartiteMatching and its helper class.
63 //
64 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
65 // bipartite matching. Flow is considered to be from left to right.
66 // There is an implicit source node that is connected to all of the left
67 // nodes, and an implicit sink node that is connected to all of the
68 // right nodes. All edges have unit capacity.
69 //
70 // Neither the flow graph nor the residual flow graph are represented
71 // explicitly. Instead, they are implied by the information in 'graph' and
72 // a vector<int> called 'left_' whose elements are initialized to the
73 // value kUnused. This represents the initial state of the algorithm,
74 // where the flow graph is empty, and the residual flow graph has the
75 // following edges:
76 // - An edge from source to each left_ node
77 // - An edge from each right_ node to sink
78 // - An edge from each left_ node to each right_ node, if the
79 // corresponding edge exists in 'graph'.
80 //
81 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
82 // nodes l and r. This induces the following changes:
83 // - The edges (source, l), (l, r), and (r, sink) are added to the
84 // flow graph.
85 // - The same three edges are removed from the residual flow graph.
86 // - The reverse edges (l, source), (r, l), and (sink, r) are added
87 // to the residual flow graph, which is a directional graph
88 // representing unused flow capacity.
89 //
90 // When the method augments a flow (moving left_[l] from some r1 to some
91 // other r2), this can be thought of as "undoing" the above steps with
92 // respect to r1 and "redoing" them with respect to r2.
93 //
94 // It bears repeating that the flow graph and residual flow graph are
95 // never represented explicitly, but can be derived by looking at the
96 // information in 'graph' and in left_.
97 //
98 // As an optimization, there is a second vector<int> called right_ which
99 // does not provide any new information. Instead, it enables more
100 // efficient queries about edges entering or leaving the right-side nodes
101 // of the flow or residual flow graphs. The following invariants are
102 // maintained:
103 //
104 // left[l] == kUnused or right[left[l]] == l
105 // right[r] == kUnused or left[right[r]] == r
106 //
107 // . [ source ] .
108 // . ||| .
109 // . ||| .
110 // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ .
111 // . || | | .
112 // . |\---> left[1]=-1 \--> right[1]=0 ---\| .
113 // . | || .
114 // . \----> left[2]=2 ------> right[2]=2 --\|| .
115 // . ||| .
116 // . elements matchers vvv .
117 // . [ sink ] .
118 //
119 // See Also:
120 // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
121 // "Introduction to Algorithms (Second ed.)", pp. 651-664.
122 // [2] "Ford-Fulkerson algorithm", Wikipedia,
123 // 'https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
125  public:
126  explicit MaxBipartiteMatchState(const MatchMatrix& graph)
127  : graph_(&graph),
128  left_(graph_->LhsSize(), kUnused),
129  right_(graph_->RhsSize(), kUnused) {}
130 
131  // Returns the edges of a maximal match, each in the form {left, right}.
132  ElementMatcherPairs Compute() {
133  // 'seen' is used for path finding { 0: unseen, 1: seen }.
134  ::std::vector<char> seen;
135  // Searches the residual flow graph for a path from each left node to
136  // the sink in the residual flow graph, and if one is found, add flow
137  // to the graph. It's okay to search through the left nodes once. The
138  // edge from the implicit source node to each previously-visited left
139  // node will have flow if that left node has any path to the sink
140  // whatsoever. Subsequent augmentations can only add flow to the
141  // network, and cannot take away that previous flow unit from the source.
142  // Since the source-to-left edge can only carry one flow unit (or,
143  // each element can be matched to only one matcher), there is no need
144  // to visit the left nodes more than once looking for augmented paths.
145  // The flow is known to be possible or impossible by looking at the
146  // node once.
147  for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
148  // Reset the path-marking vector and try to find a path from
149  // source to sink starting at the left_[ilhs] node.
150  GTEST_CHECK_(left_[ilhs] == kUnused)
151  << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
152  // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
153  seen.assign(graph_->RhsSize(), 0);
154  TryAugment(ilhs, &seen);
155  }
156  ElementMatcherPairs result;
157  for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
158  size_t irhs = left_[ilhs];
159  if (irhs == kUnused) continue;
160  result.push_back(ElementMatcherPair(ilhs, irhs));
161  }
162  return result;
163  }
164 
165  private:
166  static const size_t kUnused = static_cast<size_t>(-1);
167 
168  // Perform a depth-first search from left node ilhs to the sink. If a
169  // path is found, flow is added to the network by linking the left and
170  // right vector elements corresponding each segment of the path.
171  // Returns true if a path to sink was found, which means that a unit of
172  // flow was added to the network. The 'seen' vector elements correspond
173  // to right nodes and are marked to eliminate cycles from the search.
174  //
175  // Left nodes will only be explored at most once because they
176  // are accessible from at most one right node in the residual flow
177  // graph.
178  //
179  // Note that left_[ilhs] is the only element of left_ that TryAugment will
180  // potentially transition from kUnused to another value. Any other
181  // left_ element holding kUnused before TryAugment will be holding it
182  // when TryAugment returns.
183  //
184  bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
185  for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
186  if ((*seen)[irhs]) continue;
187  if (!graph_->HasEdge(ilhs, irhs)) continue;
188  // There's an available edge from ilhs to irhs.
189  (*seen)[irhs] = 1;
190  // Next a search is performed to determine whether
191  // this edge is a dead end or leads to the sink.
192  //
193  // right_[irhs] == kUnused means that there is residual flow from
194  // right node irhs to the sink, so we can use that to finish this
195  // flow path and return success.
196  //
197  // Otherwise there is residual flow to some ilhs. We push flow
198  // along that path and call ourselves recursively to see if this
199  // ultimately leads to sink.
200  if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
201  // Add flow from left_[ilhs] to right_[irhs].
202  left_[ilhs] = irhs;
203  right_[irhs] = ilhs;
204  return true;
205  }
206  }
207  return false;
208  }
209 
210  const MatchMatrix* graph_; // not owned
211  // Each element of the left_ vector represents a left hand side node
212  // (i.e. an element) and each element of right_ is a right hand side
213  // node (i.e. a matcher). The values in the left_ vector indicate
214  // outflow from that node to a node on the right_ side. The values
215  // in the right_ indicate inflow, and specify which left_ node is
216  // feeding that right_ node, if any. For example, left_[3] == 1 means
217  // there's a flow from element #3 to matcher #1. Such a flow would also
218  // be redundantly represented in the right_ vector as right_[1] == 3.
219  // Elements of left_ and right_ are either kUnused or mutually
220  // referent. Mutually referent means that left_[right_[i]] = i and
221  // right_[left_[i]] = i.
222  ::std::vector<size_t> left_;
223  ::std::vector<size_t> right_;
224 };
225 
227 
228 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
229  return MaxBipartiteMatchState(g).Compute();
230 }
231 
232 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
233  ::std::ostream* stream) {
234  typedef ElementMatcherPairs::const_iterator Iter;
235  ::std::ostream& os = *stream;
236  os << "{";
237  const char* sep = "";
238  for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
239  os << sep << "\n (" << "element #" << it->first << ", " << "matcher #"
240  << it->second << ")";
241  sep = ",";
242  }
243  os << "\n}";
244 }
245 
246 bool MatchMatrix::NextGraph() {
247  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
248  for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
249  char& b = matched_[SpaceIndex(ilhs, irhs)];
250  if (!b) {
251  b = 1;
252  return true;
253  }
254  b = 0;
255  }
256  }
257  return false;
258 }
259 
260 void MatchMatrix::Randomize() {
261  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
262  for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
263  char& b = matched_[SpaceIndex(ilhs, irhs)];
264  b = static_cast<char>(rand() & 1); // NOLINT
265  }
266  }
267 }
268 
269 std::string MatchMatrix::DebugString() const {
270  ::std::stringstream ss;
271  const char* sep = "";
272  for (size_t i = 0; i < LhsSize(); ++i) {
273  ss << sep;
274  for (size_t j = 0; j < RhsSize(); ++j) {
275  ss << HasEdge(i, j);
276  }
277  sep = ";";
278  }
279  return ss.str();
280 }
281 
282 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
283  ::std::ostream* os) const {
284  switch (match_flags()) {
285  case UnorderedMatcherRequire::ExactMatch:
286  if (matcher_describers_.empty()) {
287  *os << "is empty";
288  return;
289  }
290  if (matcher_describers_.size() == 1) {
291  *os << "has " << Elements(1) << " and that element ";
292  matcher_describers_[0]->DescribeTo(os);
293  return;
294  }
295  *os << "has " << Elements(matcher_describers_.size())
296  << " and there exists some permutation of elements such that:\n";
297  break;
298  case UnorderedMatcherRequire::Superset:
299  *os << "a surjection from elements to requirements exists such that:\n";
300  break;
301  case UnorderedMatcherRequire::Subset:
302  *os << "an injection from elements to requirements exists such that:\n";
303  break;
304  }
305 
306  const char* sep = "";
307  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
308  *os << sep;
309  if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
310  *os << " - element #" << i << " ";
311  } else {
312  *os << " - an element ";
313  }
314  matcher_describers_[i]->DescribeTo(os);
315  if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
316  sep = ", and\n";
317  } else {
318  sep = "\n";
319  }
320  }
321 }
322 
323 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
324  ::std::ostream* os) const {
325  switch (match_flags()) {
326  case UnorderedMatcherRequire::ExactMatch:
327  if (matcher_describers_.empty()) {
328  *os << "isn't empty";
329  return;
330  }
331  if (matcher_describers_.size() == 1) {
332  *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
333  << " that ";
334  matcher_describers_[0]->DescribeNegationTo(os);
335  return;
336  }
337  *os << "doesn't have " << Elements(matcher_describers_.size())
338  << ", or there exists no permutation of elements such that:\n";
339  break;
340  case UnorderedMatcherRequire::Superset:
341  *os << "no surjection from elements to requirements exists such that:\n";
342  break;
343  case UnorderedMatcherRequire::Subset:
344  *os << "no injection from elements to requirements exists such that:\n";
345  break;
346  }
347  const char* sep = "";
348  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
349  *os << sep;
350  if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
351  *os << " - element #" << i << " ";
352  } else {
353  *os << " - an element ";
354  }
355  matcher_describers_[i]->DescribeTo(os);
356  if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
357  sep = ", and\n";
358  } else {
359  sep = "\n";
360  }
361  }
362 }
363 
364 // Checks that all matchers match at least one element, and that all
365 // elements match at least one matcher. This enables faster matching
366 // and better error reporting.
367 // Returns false, writing an explanation to 'listener', if and only
368 // if the success criteria are not met.
369 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
370  const ::std::vector<std::string>& element_printouts,
371  const MatchMatrix& matrix, MatchResultListener* listener) const {
372  if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
373  return true;
374  }
375 
376  const bool is_exact_match_with_size_discrepency =
377  match_flags() == UnorderedMatcherRequire::ExactMatch &&
378  matrix.LhsSize() != matrix.RhsSize();
379  if (is_exact_match_with_size_discrepency) {
380  // The element count doesn't match. If the container is empty,
381  // there's no need to explain anything as Google Mock already
382  // prints the empty container. Otherwise we just need to show
383  // how many elements there actually are.
384  if (matrix.LhsSize() != 0 && listener->IsInterested()) {
385  *listener << "which has " << Elements(matrix.LhsSize()) << "\n";
386  }
387  }
388 
389  bool result = !is_exact_match_with_size_discrepency;
390  ::std::vector<char> element_matched(matrix.LhsSize(), 0);
391  ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
392 
393  for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
394  for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
395  char matched = matrix.HasEdge(ilhs, irhs);
396  element_matched[ilhs] |= matched;
397  matcher_matched[irhs] |= matched;
398  }
399  }
400 
401  if (match_flags() & UnorderedMatcherRequire::Superset) {
402  const char* sep =
403  "where the following matchers don't match any elements:\n";
404  for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
405  if (matcher_matched[mi]) continue;
406  result = false;
407  if (listener->IsInterested()) {
408  *listener << sep << "matcher #" << mi << ": ";
409  matcher_describers_[mi]->DescribeTo(listener->stream());
410  sep = ",\n";
411  }
412  }
413  }
414 
415  if (match_flags() & UnorderedMatcherRequire::Subset) {
416  const char* sep =
417  "where the following elements don't match any matchers:\n";
418  const char* outer_sep = "";
419  if (!result) {
420  outer_sep = "\nand ";
421  }
422  for (size_t ei = 0; ei < element_matched.size(); ++ei) {
423  if (element_matched[ei]) continue;
424  result = false;
425  if (listener->IsInterested()) {
426  *listener << outer_sep << sep << "element #" << ei << ": "
427  << element_printouts[ei];
428  sep = ",\n";
429  outer_sep = "";
430  }
431  }
432  }
433  return result;
434 }
435 
436 bool UnorderedElementsAreMatcherImplBase::FindPairing(
437  const MatchMatrix& matrix, MatchResultListener* listener) const {
438  ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
439 
440  size_t max_flow = matches.size();
441  if ((match_flags() & UnorderedMatcherRequire::Superset) &&
442  max_flow < matrix.RhsSize()) {
443  if (listener->IsInterested()) {
444  *listener << "where no permutation of the elements can satisfy all "
445  "matchers, and the closest match is "
446  << max_flow << " of " << matrix.RhsSize()
447  << " matchers with the pairings:\n";
448  LogElementMatcherPairVec(matches, listener->stream());
449  }
450  return false;
451  }
452  if ((match_flags() & UnorderedMatcherRequire::Subset) &&
453  max_flow < matrix.LhsSize()) {
454  if (listener->IsInterested()) {
455  *listener
456  << "where not all elements can be matched, and the closest match is "
457  << max_flow << " of " << matrix.RhsSize()
458  << " matchers with the pairings:\n";
459  LogElementMatcherPairVec(matches, listener->stream());
460  }
461  return false;
462  }
463 
464  if (matches.size() > 1) {
465  if (listener->IsInterested()) {
466  const char* sep = "where:\n";
467  for (size_t mi = 0; mi < matches.size(); ++mi) {
468  *listener << sep << " - element #" << matches[mi].first
469  << " is matched by matcher #" << matches[mi].second;
470  sep = ",\n";
471  }
472  }
473  }
474  return true;
475 }
476 
477 } // namespace internal
478 } // namespace testing
::std::vector<::std::string > Strings
#define GTEST_API_
Definition: gtest-port.h:882
MaxBipartiteMatchState(const MatchMatrix &graph)
GTEST_API_ std::string ConvertIdentifierNameToWords(const char *id_name)
static void LogElementMatcherPairVec(const ElementMatcherPairs &pairs,::std::ostream *stream)
#define GTEST_CHECK_(condition)
Definition: gtest-port.h:1118
bool TryAugment(size_t ilhs,::std::vector< char > *seen)
GTEST_API_ std::string FormatMatcherDescription(bool negation, const char *matcher_name, const std::vector< const char * > &param_names, const Strings &param_values)
GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix &g)
GTEST_API_ std::string JoinAsKeyValueTuple(const std::vector< const char * > &names, const Strings &values)