Sacado Package Browser (Single Doxygen Collection)  Version of the Day
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gmock-actions_test.cc
Go to the documentation of this file.
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // This file tests the built-in actions.
33 
34 #include "gmock/gmock-actions.h"
35 
36 #include <algorithm>
37 #include <functional>
38 #include <iterator>
39 #include <memory>
40 #include <sstream>
41 #include <string>
42 #include <tuple>
43 #include <type_traits>
44 #include <utility>
45 #include <vector>
46 
47 #include "gmock/gmock.h"
49 #include "gtest/gtest-spi.h"
50 #include "gtest/gtest.h"
52 
53 // Silence C4100 (unreferenced formal parameter) and C4503 (decorated name
54 // length exceeded) for MSVC.
56 #if defined(_MSC_VER) && (_MSC_VER == 1900)
57 // and silence C4800 (C4800: 'int *const ': forcing value
58 // to bool 'true' or 'false') for MSVC 15
60 #endif
61 
62 namespace testing {
63 namespace {
64 
65 using ::testing::internal::BuiltInDefaultValue;
66 
67 TEST(TypeTraits, Negation) {
68  // Direct use with std types.
69  static_assert(std::is_base_of<std::false_type,
70  internal::negation<std::true_type>>::value,
71  "");
72 
73  static_assert(std::is_base_of<std::true_type,
74  internal::negation<std::false_type>>::value,
75  "");
76 
77  // With other types that fit the requirement of a value member that is
78  // convertible to bool.
79  static_assert(std::is_base_of<
80  std::true_type,
81  internal::negation<std::integral_constant<int, 0>>>::value,
82  "");
83 
84  static_assert(std::is_base_of<
85  std::false_type,
86  internal::negation<std::integral_constant<int, 1>>>::value,
87  "");
88 
89  static_assert(std::is_base_of<
90  std::false_type,
91  internal::negation<std::integral_constant<int, -1>>>::value,
92  "");
93 }
94 
95 // Weird false/true types that aren't actually bool constants (but should still
96 // be legal according to [meta.logical] because `bool(T::value)` is valid), are
97 // distinct from std::false_type and std::true_type, and are distinct from other
98 // instantiations of the same template.
99 //
100 // These let us check finicky details mandated by the standard like
101 // "std::conjunction should evaluate to a type that inherits from the first
102 // false-y input".
103 template <int>
104 struct MyFalse : std::integral_constant<int, 0> {};
105 
106 template <int>
107 struct MyTrue : std::integral_constant<int, -1> {};
108 
109 TEST(TypeTraits, Conjunction) {
110  // Base case: always true.
111  static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value,
112  "");
113 
114  // One predicate: inherits from that predicate, regardless of value.
115  static_assert(
116  std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value,
117  "");
118 
119  static_assert(
120  std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, "");
121 
122  // Multiple predicates, with at least one false: inherits from that one.
123  static_assert(
124  std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
125  MyTrue<2>>>::value,
126  "");
127 
128  static_assert(
129  std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
130  MyFalse<2>>>::value,
131  "");
132 
133  // Short circuiting: in the case above, additional predicates need not even
134  // define a value member.
135  struct Empty {};
136  static_assert(
137  std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
138  Empty>>::value,
139  "");
140 
141  // All predicates true: inherits from the last.
142  static_assert(
143  std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>,
144  MyTrue<2>>>::value,
145  "");
146 }
147 
148 TEST(TypeTraits, Disjunction) {
149  // Base case: always false.
150  static_assert(
151  std::is_base_of<std::false_type, internal::disjunction<>>::value, "");
152 
153  // One predicate: inherits from that predicate, regardless of value.
154  static_assert(
155  std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value,
156  "");
157 
158  static_assert(
159  std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, "");
160 
161  // Multiple predicates, with at least one true: inherits from that one.
162  static_assert(
163  std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
164  MyFalse<2>>>::value,
165  "");
166 
167  static_assert(
168  std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
169  MyTrue<2>>>::value,
170  "");
171 
172  // Short circuiting: in the case above, additional predicates need not even
173  // define a value member.
174  struct Empty {};
175  static_assert(
176  std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
177  Empty>>::value,
178  "");
179 
180  // All predicates false: inherits from the last.
181  static_assert(
182  std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>,
183  MyFalse<2>>>::value,
184  "");
185 }
186 
187 TEST(TypeTraits, IsInvocableRV) {
188  struct C {
189  int operator()() const { return 0; }
190  void operator()(int) & {}
191  std::string operator()(int) && { return ""; };
192  };
193 
194  // The first overload is callable for const and non-const rvalues and lvalues.
195  // It can be used to obtain an int, cv void, or anything int is convertible
196  // to.
197  static_assert(internal::is_callable_r<int, C>::value, "");
198  static_assert(internal::is_callable_r<int, C&>::value, "");
201 
202  static_assert(internal::is_callable_r<void, C>::value, "");
204  static_assert(internal::is_callable_r<char, C>::value, "");
205 
206  // It's possible to provide an int. If it's given to an lvalue, the result is
207  // void. Otherwise it is std::string (which is also treated as allowed for a
208  // void result type).
213 
217 
218  // It's not possible to provide other arguments.
221 
222  // In C++17 and above, where it's guaranteed that functions can return
223  // non-moveable objects, everything should work fine for non-moveable rsult
224  // types too.
225 #if defined(GTEST_INTERNAL_CPLUSPLUS_LANG) && \
226  GTEST_INTERNAL_CPLUSPLUS_LANG >= 201703L
227  {
228  struct NonMoveable {
229  NonMoveable() = default;
230  NonMoveable(NonMoveable&&) = delete;
231  };
232 
233  static_assert(!std::is_move_constructible_v<NonMoveable>);
234 
235  struct Callable {
236  NonMoveable operator()() { return NonMoveable(); }
237  };
238 
241  static_assert(
243 
246  }
247 #endif // C++17 and above
248 
249  // Nothing should choke when we try to call other arguments besides directly
250  // callable objects, but they should not show up as callable.
251  static_assert(!internal::is_callable_r<void, int>::value, "");
252  static_assert(!internal::is_callable_r<void, void (C::*)()>::value, "");
253  static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, "");
254 }
255 
256 // Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
257 TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
258  EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr);
259  EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr);
260  EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr);
261 }
262 
263 // Tests that BuiltInDefaultValue<T*>::Exists() return true.
264 TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
265  EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
266  EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
267  EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
268 }
269 
270 // Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
271 // built-in numeric type.
272 TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
273  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
274  EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
275  EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
276 #if GMOCK_WCHAR_T_IS_NATIVE_
277 #if !defined(__WCHAR_UNSIGNED__)
278  EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
279 #else
280  EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get());
281 #endif
282 #endif
283  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT
284  EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT
285  EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT
286  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
287  EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
288  EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
289  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT
290  EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT
291  EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT
292  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get()); // NOLINT
293  EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get()); // NOLINT
294  EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get()); // NOLINT
295  EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
296  EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
297 }
298 
299 // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
300 // built-in numeric type.
301 TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
302  EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
303  EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
304  EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
305 #if GMOCK_WCHAR_T_IS_NATIVE_
306  EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
307 #endif
308  EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT
309  EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT
310  EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT
311  EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
312  EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
313  EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
314  EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT
315  EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT
316  EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT
317  EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists()); // NOLINT
318  EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists()); // NOLINT
319  EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists()); // NOLINT
320  EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
321  EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
322 }
323 
324 // Tests that BuiltInDefaultValue<bool>::Get() returns false.
325 TEST(BuiltInDefaultValueTest, IsFalseForBool) {
326  EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
327 }
328 
329 // Tests that BuiltInDefaultValue<bool>::Exists() returns true.
330 TEST(BuiltInDefaultValueTest, BoolExists) {
331  EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
332 }
333 
334 // Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
335 // string type.
336 TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
337  EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get());
338 }
339 
340 // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
341 // string type.
342 TEST(BuiltInDefaultValueTest, ExistsForString) {
343  EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists());
344 }
345 
346 // Tests that BuiltInDefaultValue<const T>::Get() returns the same
347 // value as BuiltInDefaultValue<T>::Get() does.
348 TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
349  EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
350  EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
351  EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr);
352  EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
353 }
354 
355 // A type that's default constructible.
356 class MyDefaultConstructible {
357  public:
358  MyDefaultConstructible() : value_(42) {}
359 
360  int value() const { return value_; }
361 
362  private:
363  int value_;
364 };
365 
366 // A type that's not default constructible.
367 class MyNonDefaultConstructible {
368  public:
369  // Does not have a default ctor.
370  explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
371 
372  int value() const { return value_; }
373 
374  private:
375  int value_;
376 };
377 
378 TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
379  EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
380 }
381 
382 TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
383  EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
384 }
385 
386 TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
387  EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
388 }
389 
390 // Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
391 TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
392  EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, "");
393  EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, "");
394 }
395 
396 TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
398  { BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, "");
399 }
400 
401 // Tests that DefaultValue<T>::IsSet() is false initially.
402 TEST(DefaultValueTest, IsInitiallyUnset) {
403  EXPECT_FALSE(DefaultValue<int>::IsSet());
404  EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
405  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
406 }
407 
408 // Tests that DefaultValue<T> can be set and then unset.
409 TEST(DefaultValueTest, CanBeSetAndUnset) {
410  EXPECT_TRUE(DefaultValue<int>::Exists());
411  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
412 
415  MyNonDefaultConstructible(42));
416 
417  EXPECT_EQ(1, DefaultValue<int>::Get());
418  EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
419 
420  EXPECT_TRUE(DefaultValue<int>::Exists());
421  EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
422 
425 
426  EXPECT_FALSE(DefaultValue<int>::IsSet());
427  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
428 
429  EXPECT_TRUE(DefaultValue<int>::Exists());
430  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
431 }
432 
433 // Tests that DefaultValue<T>::Get() returns the
434 // BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
435 // false.
436 TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
437  EXPECT_FALSE(DefaultValue<int>::IsSet());
438  EXPECT_TRUE(DefaultValue<int>::Exists());
439  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
440  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
441 
442  EXPECT_EQ(0, DefaultValue<int>::Get());
443 
446 }
447 
448 TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
449  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
450  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr);
451  DefaultValue<std::unique_ptr<int>>::SetFactory(
452  [] { return std::make_unique<int>(42); });
453  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
454  std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
455  EXPECT_EQ(42, *i);
456 }
457 
458 // Tests that DefaultValue<void>::Get() returns void.
459 TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); }
460 
461 // Tests using DefaultValue with a reference type.
462 
463 // Tests that DefaultValue<T&>::IsSet() is false initially.
464 TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
465  EXPECT_FALSE(DefaultValue<int&>::IsSet());
466  EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
467  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
468 }
469 
470 // Tests that DefaultValue<T&>::Exists is false initially.
471 TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
472  EXPECT_FALSE(DefaultValue<int&>::Exists());
473  EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
474  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
475 }
476 
477 // Tests that DefaultValue<T&> can be set and then unset.
478 TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
479  int n = 1;
481  MyNonDefaultConstructible x(42);
483 
484  EXPECT_TRUE(DefaultValue<const int&>::Exists());
485  EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
486 
487  EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
488  EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
489 
492 
493  EXPECT_FALSE(DefaultValue<const int&>::Exists());
494  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
495 
496  EXPECT_FALSE(DefaultValue<const int&>::IsSet());
497  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
498 }
499 
500 // Tests that DefaultValue<T&>::Get() returns the
501 // BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
502 // false.
503 TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
504  EXPECT_FALSE(DefaultValue<int&>::IsSet());
505  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
506 
510 }
511 
512 // Tests that ActionInterface can be implemented by defining the
513 // Perform method.
514 
515 typedef int MyGlobalFunction(bool, int);
516 
517 class MyActionImpl : public ActionInterface<MyGlobalFunction> {
518  public:
519  int Perform(const std::tuple<bool, int>& args) override {
520  return std::get<0>(args) ? std::get<1>(args) : 0;
521  }
522 };
523 
524 TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
525  MyActionImpl my_action_impl;
526  (void)my_action_impl;
527 }
528 
529 TEST(ActionInterfaceTest, MakeAction) {
530  Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
531 
532  // When exercising the Perform() method of Action<F>, we must pass
533  // it a tuple whose size and type are compatible with F's argument
534  // types. For example, if F is int(), then Perform() takes a
535  // 0-tuple; if F is void(bool, int), then Perform() takes a
536  // std::tuple<bool, int>, and so on.
537  EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
538 }
539 
540 // Tests that Action<F> can be constructed from a pointer to
541 // ActionInterface<F>.
542 TEST(ActionTest, CanBeConstructedFromActionInterface) {
543  Action<MyGlobalFunction> action(new MyActionImpl);
544 }
545 
546 // Tests that Action<F> delegates actual work to ActionInterface<F>.
547 TEST(ActionTest, DelegatesWorkToActionInterface) {
548  const Action<MyGlobalFunction> action(new MyActionImpl);
549 
550  EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
551  EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1)));
552 }
553 
554 // Tests that Action<F> can be copied.
555 TEST(ActionTest, IsCopyable) {
556  Action<MyGlobalFunction> a1(new MyActionImpl);
557  Action<MyGlobalFunction> a2(a1); // Tests the copy constructor.
558 
559  // a1 should continue to work after being copied from.
560  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
561  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
562 
563  // a2 should work like the action it was copied from.
564  EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
565  EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
566 
567  a2 = a1; // Tests the assignment operator.
568 
569  // a1 should continue to work after being copied from.
570  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
571  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
572 
573  // a2 should work like the action it was copied from.
574  EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
575  EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
576 }
577 
578 // Tests that an Action<From> object can be converted to a
579 // compatible Action<To> object.
580 
581 class IsNotZero : public ActionInterface<bool(int)> { // NOLINT
582  public:
583  bool Perform(const std::tuple<int>& arg) override {
584  return std::get<0>(arg) != 0;
585  }
586 };
587 
588 TEST(ActionTest, CanBeConvertedToOtherActionType) {
589  const Action<bool(int)> a1(new IsNotZero); // NOLINT
590  const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT
591  EXPECT_EQ(1, a2.Perform(std::make_tuple('a')));
592  EXPECT_EQ(0, a2.Perform(std::make_tuple('\0')));
593 }
594 
595 // The following two classes are for testing MakePolymorphicAction().
596 
597 // Implements a polymorphic action that returns the second of the
598 // arguments it receives.
599 class ReturnSecondArgumentAction {
600  public:
601  // We want to verify that MakePolymorphicAction() can work with a
602  // polymorphic action whose Perform() method template is either
603  // const or not. This lets us verify the non-const case.
604  template <typename Result, typename ArgumentTuple>
605  Result Perform(const ArgumentTuple& args) {
606  return std::get<1>(args);
607  }
608 };
609 
610 // Implements a polymorphic action that can be used in a nullary
611 // function to return 0.
612 class ReturnZeroFromNullaryFunctionAction {
613  public:
614  // For testing that MakePolymorphicAction() works when the
615  // implementation class' Perform() method template takes only one
616  // template parameter.
617  //
618  // We want to verify that MakePolymorphicAction() can work with a
619  // polymorphic action whose Perform() method template is either
620  // const or not. This lets us verify the const case.
621  template <typename Result>
622  Result Perform(const std::tuple<>&) const {
623  return 0;
624  }
625 };
626 
627 // These functions verify that MakePolymorphicAction() returns a
628 // PolymorphicAction<T> where T is the argument's type.
629 
630 PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
631  return MakePolymorphicAction(ReturnSecondArgumentAction());
632 }
633 
634 PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
635 ReturnZeroFromNullaryFunction() {
636  return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
637 }
638 
639 // Tests that MakePolymorphicAction() turns a polymorphic action
640 // implementation class into a polymorphic action.
641 TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
642  Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT
643  EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0)));
644 }
645 
646 // Tests that MakePolymorphicAction() works when the implementation
647 // class' Perform() method template has only one template parameter.
648 TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
649  Action<int()> a1 = ReturnZeroFromNullaryFunction();
650  EXPECT_EQ(0, a1.Perform(std::make_tuple()));
651 
652  Action<void*()> a2 = ReturnZeroFromNullaryFunction();
653  EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr);
654 }
655 
656 // Tests that Return() works as an action for void-returning
657 // functions.
658 TEST(ReturnTest, WorksForVoid) {
659  const Action<void(int)> ret = Return(); // NOLINT
660  return ret.Perform(std::make_tuple(1));
661 }
662 
663 // Tests that Return(v) returns v.
664 TEST(ReturnTest, ReturnsGivenValue) {
665  Action<int()> ret = Return(1); // NOLINT
666  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
667 
668  ret = Return(-5);
669  EXPECT_EQ(-5, ret.Perform(std::make_tuple()));
670 }
671 
672 // Tests that Return("string literal") works.
673 TEST(ReturnTest, AcceptsStringLiteral) {
674  Action<const char*()> a1 = Return("Hello");
675  EXPECT_STREQ("Hello", a1.Perform(std::make_tuple()));
676 
677  Action<std::string()> a2 = Return("world");
678  EXPECT_EQ("world", a2.Perform(std::make_tuple()));
679 }
680 
681 // Return(x) should work fine when the mock function's return type is a
682 // reference-like wrapper for decltype(x), as when x is a std::string and the
683 // mock function returns std::string_view.
684 TEST(ReturnTest, SupportsReferenceLikeReturnType) {
685  // A reference wrapper for std::vector<int>, implicitly convertible from it.
686  struct Result {
687  const std::vector<int>* v;
688  Result(const std::vector<int>& vec) : v(&vec) {} // NOLINT
689  };
690 
691  // Set up an action for a mock function that returns the reference wrapper
692  // type, initializing it with an actual vector.
693  //
694  // The returned wrapper should be initialized with a copy of that vector
695  // that's embedded within the action itself (which should stay alive as long
696  // as the mock object is alive), rather than e.g. a reference to the temporary
697  // we feed to Return. This should work fine both for WillOnce and
698  // WillRepeatedly.
699  MockFunction<Result()> mock;
700  EXPECT_CALL(mock, Call)
701  .WillOnce(Return(std::vector<int>{17, 19, 23}))
702  .WillRepeatedly(Return(std::vector<int>{29, 31, 37}));
703 
704  EXPECT_THAT(mock.AsStdFunction()(),
705  Field(&Result::v, Pointee(ElementsAre(17, 19, 23))));
706 
707  EXPECT_THAT(mock.AsStdFunction()(),
708  Field(&Result::v, Pointee(ElementsAre(29, 31, 37))));
709 }
710 
711 TEST(ReturnTest, PrefersConversionOperator) {
712  // Define types In and Out such that:
713  //
714  // * In is implicitly convertible to Out.
715  // * Out also has an explicit constructor from In.
716  //
717  struct In;
718  struct Out {
719  int x;
720 
721  explicit Out(const int val) : x(val) {}
722  explicit Out(const In&) : x(0) {}
723  };
724 
725  struct In {
726  operator Out() const { return Out{19}; } // NOLINT
727  };
728 
729  // Assumption check: the C++ language rules are such that a function that
730  // returns Out which uses In a return statement will use the implicit
731  // conversion path rather than the explicit constructor.
732  EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19));
733 
734  // Return should work the same way: if the mock function's return type is Out
735  // and we feed Return an In value, then the Out should be created through the
736  // implicit conversion path rather than the explicit constructor.
737  MockFunction<Out()> mock;
738  EXPECT_CALL(mock, Call).WillOnce(Return(In()));
739  EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19));
740 }
741 
742 // It should be possible to use Return(R) with a mock function result type U
743 // that is convertible from const R& but *not* R (such as
744 // std::reference_wrapper). This should work for both WillOnce and
745 // WillRepeatedly.
746 TEST(ReturnTest, ConversionRequiresConstLvalueReference) {
747  using R = int;
748  using U = std::reference_wrapper<const int>;
749 
750  static_assert(std::is_convertible<const R&, U>::value, "");
751  static_assert(!std::is_convertible<R, U>::value, "");
752 
753  MockFunction<U()> mock;
754  EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19));
755 
756  EXPECT_EQ(17, mock.AsStdFunction()());
757  EXPECT_EQ(19, mock.AsStdFunction()());
758 }
759 
760 // Return(x) should not be usable with a mock function result type that's
761 // implicitly convertible from decltype(x) but requires a non-const lvalue
762 // reference to the input. It doesn't make sense for the conversion operator to
763 // modify the input.
764 TEST(ReturnTest, ConversionRequiresMutableLvalueReference) {
765  // Set up a type that is implicitly convertible from std::string&, but not
766  // std::string&& or `const std::string&`.
767  //
768  // Avoid asserting about conversion from std::string on MSVC, which seems to
769  // implement std::is_convertible incorrectly in this case.
770  struct S {
771  S(std::string&) {} // NOLINT
772  };
773 
775 #ifndef _MSC_VER
777 #endif
779 
780  // It shouldn't be possible to use the result of Return(std::string) in a
781  // context where an S is needed.
782  //
783  // Here too we disable the assertion for MSVC, since its incorrect
784  // implementation of is_convertible causes our SFINAE to be wrong.
785  using RA = decltype(Return(std::string()));
786 
787  static_assert(!std::is_convertible<RA, Action<S()>>::value, "");
788 #ifndef _MSC_VER
789  static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, "");
790 #endif
791 }
792 
793 TEST(ReturnTest, MoveOnlyResultType) {
794  // Return should support move-only result types when used with WillOnce.
795  {
796  MockFunction<std::unique_ptr<int>()> mock;
797  EXPECT_CALL(mock, Call)
798  // NOLINTNEXTLINE
799  .WillOnce(Return(std::unique_ptr<int>(new int(17))));
800 
801  EXPECT_THAT(mock.AsStdFunction()(), Pointee(17));
802  }
803 
804  // The result of Return should not be convertible to Action (so it can't be
805  // used with WillRepeatedly).
806  static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())),
807  Action<std::unique_ptr<int>()>>::value,
808  "");
809 }
810 
811 // Tests that Return(v) is covariant.
812 
813 struct Base {
814  bool operator==(const Base&) { return true; }
815 };
816 
817 struct Derived : public Base {
818  bool operator==(const Derived&) { return true; }
819 };
820 
821 TEST(ReturnTest, IsCovariant) {
822  Base base;
823  Derived derived;
824  Action<Base*()> ret = Return(&base);
825  EXPECT_EQ(&base, ret.Perform(std::make_tuple()));
826 
827  ret = Return(&derived);
828  EXPECT_EQ(&derived, ret.Perform(std::make_tuple()));
829 }
830 
831 // Tests that the type of the value passed into Return is converted into T
832 // when the action is cast to Action<T(...)> rather than when the action is
833 // performed. See comments on testing::internal::ReturnAction in
834 // gmock-actions.h for more information.
835 class FromType {
836  public:
837  explicit FromType(bool* is_converted) : converted_(is_converted) {}
838  bool* converted() const { return converted_; }
839 
840  private:
841  bool* const converted_;
842 };
843 
844 class ToType {
845  public:
846  // Must allow implicit conversion due to use in ImplicitCast_<T>.
847  ToType(const FromType& x) { *x.converted() = true; } // NOLINT
848 };
849 
850 TEST(ReturnTest, ConvertsArgumentWhenConverted) {
851  bool converted = false;
852  FromType x(&converted);
853  Action<ToType()> action(Return(x));
854  EXPECT_TRUE(converted) << "Return must convert its argument in its own "
855  << "conversion operator.";
856  converted = false;
857  action.Perform(std::tuple<>());
858  EXPECT_FALSE(converted) << "Action must NOT convert its argument "
859  << "when performed.";
860 }
861 
862 // Tests that ReturnNull() returns NULL in a pointer-returning function.
863 TEST(ReturnNullTest, WorksInPointerReturningFunction) {
864  const Action<int*()> a1 = ReturnNull();
865  EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
866 
867  const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT
868  EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr);
869 }
870 
871 // Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
872 // functions.
873 TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
874  const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
875  EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
876 
877  const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
878  EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr);
879 }
880 
881 // Tests that ReturnRef(v) works for reference types.
882 TEST(ReturnRefTest, WorksForReference) {
883  const int n = 0;
884  const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT
885 
886  EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true)));
887 }
888 
889 // Tests that ReturnRef(v) is covariant.
890 TEST(ReturnRefTest, IsCovariant) {
891  Base base;
892  Derived derived;
893  Action<Base&()> a = ReturnRef(base);
894  EXPECT_EQ(&base, &a.Perform(std::make_tuple()));
895 
896  a = ReturnRef(derived);
897  EXPECT_EQ(&derived, &a.Perform(std::make_tuple()));
898 }
899 
900 template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))>
901 bool CanCallReturnRef(T&&) {
902  return true;
903 }
904 bool CanCallReturnRef(Unused) { return false; }
905 
906 // Tests that ReturnRef(v) is working with non-temporaries (T&)
907 TEST(ReturnRefTest, WorksForNonTemporary) {
908  int scalar_value = 123;
909  EXPECT_TRUE(CanCallReturnRef(scalar_value));
910 
911  std::string non_scalar_value("ABC");
912  EXPECT_TRUE(CanCallReturnRef(non_scalar_value));
913 
914  const int const_scalar_value{321};
915  EXPECT_TRUE(CanCallReturnRef(const_scalar_value));
916 
917  const std::string const_non_scalar_value("CBA");
918  EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value));
919 }
920 
921 // Tests that ReturnRef(v) is not working with temporaries (T&&)
922 TEST(ReturnRefTest, DoesNotWorkForTemporary) {
923  auto scalar_value = []() -> int { return 123; };
924  EXPECT_FALSE(CanCallReturnRef(scalar_value()));
925 
926  auto non_scalar_value = []() -> std::string { return "ABC"; };
927  EXPECT_FALSE(CanCallReturnRef(non_scalar_value()));
928 
929  // cannot use here callable returning "const scalar type",
930  // because such const for scalar return type is ignored
931  EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321)));
932 
933  auto const_non_scalar_value = []() -> const std::string { return "CBA"; };
934  EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value()));
935 }
936 
937 // Tests that ReturnRefOfCopy(v) works for reference types.
938 TEST(ReturnRefOfCopyTest, WorksForReference) {
939  int n = 42;
940  const Action<const int&()> ret = ReturnRefOfCopy(n);
941 
942  EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
943  EXPECT_EQ(42, ret.Perform(std::make_tuple()));
944 
945  n = 43;
946  EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
947  EXPECT_EQ(42, ret.Perform(std::make_tuple()));
948 }
949 
950 // Tests that ReturnRefOfCopy(v) is covariant.
951 TEST(ReturnRefOfCopyTest, IsCovariant) {
952  Base base;
953  Derived derived;
954  Action<Base&()> a = ReturnRefOfCopy(base);
955  EXPECT_NE(&base, &a.Perform(std::make_tuple()));
956 
957  a = ReturnRefOfCopy(derived);
958  EXPECT_NE(&derived, &a.Perform(std::make_tuple()));
959 }
960 
961 // Tests that ReturnRoundRobin(v) works with initializer lists
962 TEST(ReturnRoundRobinTest, WorksForInitList) {
963  Action<int()> ret = ReturnRoundRobin({1, 2, 3});
964 
965  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
966  EXPECT_EQ(2, ret.Perform(std::make_tuple()));
967  EXPECT_EQ(3, ret.Perform(std::make_tuple()));
968  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
969  EXPECT_EQ(2, ret.Perform(std::make_tuple()));
970  EXPECT_EQ(3, ret.Perform(std::make_tuple()));
971 }
972 
973 // Tests that ReturnRoundRobin(v) works with vectors
974 TEST(ReturnRoundRobinTest, WorksForVector) {
975  std::vector<double> v = {4.4, 5.5, 6.6};
976  Action<double()> ret = ReturnRoundRobin(v);
977 
978  EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
979  EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
980  EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
981  EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
982  EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
983  EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
984 }
985 
986 // Tests that DoDefault() does the default action for the mock method.
987 
988 class MockClass {
989  public:
990  MockClass() = default;
991 
992  MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT
993  MOCK_METHOD0(Foo, MyNonDefaultConstructible());
994  MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
995  MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
996  MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
997  MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>));
998  MOCK_METHOD2(TakeUnique,
999  int(const std::unique_ptr<int>&, std::unique_ptr<int>));
1000 
1001  private:
1002  MockClass(const MockClass&) = delete;
1003  MockClass& operator=(const MockClass&) = delete;
1004 };
1005 
1006 // Tests that DoDefault() returns the built-in default value for the
1007 // return type by default.
1008 TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
1009  MockClass mock;
1010  EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1011  EXPECT_EQ(0, mock.IntFunc(true));
1012 }
1013 
1014 // Tests that DoDefault() throws (when exceptions are enabled) or aborts
1015 // the process when there is no built-in default value for the return type.
1016 TEST(DoDefaultDeathTest, DiesForUnknowType) {
1017  MockClass mock;
1018  EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault());
1019 #if GTEST_HAS_EXCEPTIONS
1020  EXPECT_ANY_THROW(mock.Foo());
1021 #else
1022  EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, "");
1023 #endif
1024 }
1025 
1026 // Tests that using DoDefault() inside a composite action leads to a
1027 // run-time error.
1028 
1029 void VoidFunc(bool /* flag */) {}
1030 
1031 TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
1032  MockClass mock;
1033  EXPECT_CALL(mock, IntFunc(_))
1034  .WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault()));
1035 
1036  // Ideally we should verify the error message as well. Sadly,
1037  // EXPECT_DEATH() can only capture stderr, while Google Mock's
1038  // errors are printed on stdout. Therefore we have to settle for
1039  // not verifying the message.
1040  EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, "");
1041 }
1042 
1043 // Tests that DoDefault() returns the default value set by
1044 // DefaultValue<T>::Set() when it's not overridden by an ON_CALL().
1045 TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
1047  MockClass mock;
1048  EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1049  EXPECT_EQ(1, mock.IntFunc(false));
1051 }
1052 
1053 // Tests that DoDefault() does the action specified by ON_CALL().
1054 TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
1055  MockClass mock;
1056  ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2));
1057  EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1058  EXPECT_EQ(2, mock.IntFunc(false));
1059 }
1060 
1061 // Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
1062 TEST(DoDefaultTest, CannotBeUsedInOnCall) {
1063  MockClass mock;
1065  { // NOLINT
1066  ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault());
1067  },
1068  "DoDefault() cannot be used in ON_CALL()");
1069 }
1070 
1071 // Tests that SetArgPointee<N>(v) sets the variable pointed to by
1072 // the N-th (0-based) argument to v.
1073 TEST(SetArgPointeeTest, SetsTheNthPointee) {
1074  typedef void MyFunction(bool, int*, char*);
1075  Action<MyFunction> a = SetArgPointee<1>(2);
1076 
1077  int n = 0;
1078  char ch = '\0';
1079  a.Perform(std::make_tuple(true, &n, &ch));
1080  EXPECT_EQ(2, n);
1081  EXPECT_EQ('\0', ch);
1082 
1083  a = SetArgPointee<2>('a');
1084  n = 0;
1085  ch = '\0';
1086  a.Perform(std::make_tuple(true, &n, &ch));
1087  EXPECT_EQ(0, n);
1088  EXPECT_EQ('a', ch);
1089 }
1090 
1091 // Tests that SetArgPointee<N>() accepts a string literal.
1092 TEST(SetArgPointeeTest, AcceptsStringLiteral) {
1093  typedef void MyFunction(std::string*, const char**);
1094  Action<MyFunction> a = SetArgPointee<0>("hi");
1095  std::string str;
1096  const char* ptr = nullptr;
1097  a.Perform(std::make_tuple(&str, &ptr));
1098  EXPECT_EQ("hi", str);
1099  EXPECT_TRUE(ptr == nullptr);
1100 
1101  a = SetArgPointee<1>("world");
1102  str = "";
1103  a.Perform(std::make_tuple(&str, &ptr));
1104  EXPECT_EQ("", str);
1105  EXPECT_STREQ("world", ptr);
1106 }
1107 
1108 TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
1109  typedef void MyFunction(const wchar_t**);
1110  Action<MyFunction> a = SetArgPointee<0>(L"world");
1111  const wchar_t* ptr = nullptr;
1112  a.Perform(std::make_tuple(&ptr));
1113  EXPECT_STREQ(L"world", ptr);
1114 
1115 #if GTEST_HAS_STD_WSTRING
1116 
1117  typedef void MyStringFunction(std::wstring*);
1118  Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
1119  std::wstring str = L"";
1120  a2.Perform(std::make_tuple(&str));
1121  EXPECT_EQ(L"world", str);
1122 
1123 #endif
1124 }
1125 
1126 // Tests that SetArgPointee<N>() accepts a char pointer.
1127 TEST(SetArgPointeeTest, AcceptsCharPointer) {
1128  typedef void MyFunction(bool, std::string*, const char**);
1129  const char* const hi = "hi";
1130  Action<MyFunction> a = SetArgPointee<1>(hi);
1131  std::string str;
1132  const char* ptr = nullptr;
1133  a.Perform(std::make_tuple(true, &str, &ptr));
1134  EXPECT_EQ("hi", str);
1135  EXPECT_TRUE(ptr == nullptr);
1136 
1137  char world_array[] = "world";
1138  char* const world = world_array;
1139  a = SetArgPointee<2>(world);
1140  str = "";
1141  a.Perform(std::make_tuple(true, &str, &ptr));
1142  EXPECT_EQ("", str);
1143  EXPECT_EQ(world, ptr);
1144 }
1145 
1146 TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
1147  typedef void MyFunction(bool, const wchar_t**);
1148  const wchar_t* const hi = L"hi";
1149  Action<MyFunction> a = SetArgPointee<1>(hi);
1150  const wchar_t* ptr = nullptr;
1151  a.Perform(std::make_tuple(true, &ptr));
1152  EXPECT_EQ(hi, ptr);
1153 
1154 #if GTEST_HAS_STD_WSTRING
1155 
1156  typedef void MyStringFunction(bool, std::wstring*);
1157  wchar_t world_array[] = L"world";
1158  wchar_t* const world = world_array;
1159  Action<MyStringFunction> a2 = SetArgPointee<1>(world);
1160  std::wstring str;
1161  a2.Perform(std::make_tuple(true, &str));
1162  EXPECT_EQ(world_array, str);
1163 #endif
1164 }
1165 
1166 // Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
1167 // the N-th (0-based) argument to v.
1168 TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
1169  typedef void MyFunction(bool, int*, char*);
1170  Action<MyFunction> a = SetArgumentPointee<1>(2);
1171 
1172  int n = 0;
1173  char ch = '\0';
1174  a.Perform(std::make_tuple(true, &n, &ch));
1175  EXPECT_EQ(2, n);
1176  EXPECT_EQ('\0', ch);
1177 
1178  a = SetArgumentPointee<2>('a');
1179  n = 0;
1180  ch = '\0';
1181  a.Perform(std::make_tuple(true, &n, &ch));
1182  EXPECT_EQ(0, n);
1183  EXPECT_EQ('a', ch);
1184 }
1185 
1186 // Sample functions and functors for testing Invoke() and etc.
1187 int Nullary() { return 1; }
1188 
1189 class NullaryFunctor {
1190  public:
1191  int operator()() { return 2; }
1192 };
1193 
1194 bool g_done = false;
1195 void VoidNullary() { g_done = true; }
1196 
1197 class VoidNullaryFunctor {
1198  public:
1199  void operator()() { g_done = true; }
1200 };
1201 
1202 short Short(short n) { return n; } // NOLINT
1203 char Char(char ch) { return ch; }
1204 
1205 const char* CharPtr(const char* s) { return s; }
1206 
1207 bool Unary(int x) { return x < 0; }
1208 
1209 const char* Binary(const char* input, short n) { return input + n; } // NOLINT
1210 
1211 void VoidBinary(int, char) { g_done = true; }
1212 
1213 int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
1214 
1215 int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
1216 
1217 class Foo {
1218  public:
1219  Foo() : value_(123) {}
1220 
1221  int Nullary() const { return value_; }
1222 
1223  private:
1224  int value_;
1225 };
1226 
1227 // Tests InvokeWithoutArgs(function).
1228 TEST(InvokeWithoutArgsTest, Function) {
1229  // As an action that takes one argument.
1230  Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT
1231  EXPECT_EQ(1, a.Perform(std::make_tuple(2)));
1232 
1233  // As an action that takes two arguments.
1234  Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT
1235  EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5)));
1236 
1237  // As an action that returns void.
1238  Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT
1239  g_done = false;
1240  a3.Perform(std::make_tuple(1));
1241  EXPECT_TRUE(g_done);
1242 }
1243 
1244 // Tests InvokeWithoutArgs(functor).
1245 TEST(InvokeWithoutArgsTest, Functor) {
1246  // As an action that takes no argument.
1247  Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT
1248  EXPECT_EQ(2, a.Perform(std::make_tuple()));
1249 
1250  // As an action that takes three arguments.
1251  Action<int(int, double, char)> a2 = // NOLINT
1252  InvokeWithoutArgs(NullaryFunctor());
1253  EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a')));
1254 
1255  // As an action that returns void.
1256  Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
1257  g_done = false;
1258  a3.Perform(std::make_tuple());
1259  EXPECT_TRUE(g_done);
1260 }
1261 
1262 // Tests InvokeWithoutArgs(obj_ptr, method).
1263 TEST(InvokeWithoutArgsTest, Method) {
1264  Foo foo;
1265  Action<int(bool, char)> a = // NOLINT
1267  EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a')));
1268 }
1269 
1270 // Tests using IgnoreResult() on a polymorphic action.
1271 TEST(IgnoreResultTest, PolymorphicAction) {
1272  Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT
1273  a.Perform(std::make_tuple(1));
1274 }
1275 
1276 // Tests using IgnoreResult() on a monomorphic action.
1277 
1278 int ReturnOne() {
1279  g_done = true;
1280  return 1;
1281 }
1282 
1283 TEST(IgnoreResultTest, MonomorphicAction) {
1284  g_done = false;
1285  Action<void()> a = IgnoreResult(Invoke(ReturnOne));
1286  a.Perform(std::make_tuple());
1287  EXPECT_TRUE(g_done);
1288 }
1289 
1290 // Tests using IgnoreResult() on an action that returns a class type.
1291 
1292 MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
1293  g_done = true;
1294  return MyNonDefaultConstructible(42);
1295 }
1296 
1297 TEST(IgnoreResultTest, ActionReturningClass) {
1298  g_done = false;
1299  Action<void(int)> a =
1300  IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT
1301  a.Perform(std::make_tuple(2));
1302  EXPECT_TRUE(g_done);
1303 }
1304 
1305 TEST(AssignTest, Int) {
1306  int x = 0;
1307  Action<void(int)> a = Assign(&x, 5);
1308  a.Perform(std::make_tuple(0));
1309  EXPECT_EQ(5, x);
1310 }
1311 
1312 TEST(AssignTest, String) {
1313  ::std::string x;
1314  Action<void(void)> a = Assign(&x, "Hello, world");
1315  a.Perform(std::make_tuple());
1316  EXPECT_EQ("Hello, world", x);
1317 }
1318 
1319 TEST(AssignTest, CompatibleTypes) {
1320  double x = 0;
1321  Action<void(int)> a = Assign(&x, 5);
1322  a.Perform(std::make_tuple(0));
1323  EXPECT_DOUBLE_EQ(5, x);
1324 }
1325 
1326 // DoAll should support &&-qualified actions when used with WillOnce.
1327 TEST(DoAll, SupportsRefQualifiedActions) {
1328  struct InitialAction {
1329  void operator()(const int arg) && { EXPECT_EQ(17, arg); }
1330  };
1331 
1332  struct FinalAction {
1333  int operator()() && { return 19; }
1334  };
1335 
1336  MockFunction<int(int)> mock;
1337  EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{}));
1338  EXPECT_EQ(19, mock.AsStdFunction()(17));
1339 }
1340 
1341 // DoAll should never provide rvalue references to the initial actions. If the
1342 // mock action itself accepts an rvalue reference or a non-scalar object by
1343 // value then the final action should receive an rvalue reference, but initial
1344 // actions should receive only lvalue references.
1345 TEST(DoAll, ProvidesLvalueReferencesToInitialActions) {
1346  struct Obj {};
1347 
1348  // Mock action accepts by value: the initial action should be fed a const
1349  // lvalue reference, and the final action an rvalue reference.
1350  {
1351  struct InitialAction {
1352  void operator()(Obj&) const { FAIL() << "Unexpected call"; }
1353  void operator()(const Obj&) const {}
1354  void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1355  void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
1356  };
1357 
1358  MockFunction<void(Obj)> mock;
1359  EXPECT_CALL(mock, Call)
1360  .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
1361  .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1362 
1363  mock.AsStdFunction()(Obj{});
1364  mock.AsStdFunction()(Obj{});
1365  }
1366 
1367  // Mock action accepts by const lvalue reference: both actions should receive
1368  // a const lvalue reference.
1369  {
1370  struct InitialAction {
1371  void operator()(Obj&) const { FAIL() << "Unexpected call"; }
1372  void operator()(const Obj&) const {}
1373  void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1374  void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
1375  };
1376 
1377  MockFunction<void(const Obj&)> mock;
1378  EXPECT_CALL(mock, Call)
1379  .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}))
1380  .WillRepeatedly(
1381  DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}));
1382 
1383  mock.AsStdFunction()(Obj{});
1384  mock.AsStdFunction()(Obj{});
1385  }
1386 
1387  // Mock action accepts by non-const lvalue reference: both actions should get
1388  // a non-const lvalue reference if they want them.
1389  {
1390  struct InitialAction {
1391  void operator()(Obj&) const {}
1392  void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1393  };
1394 
1395  MockFunction<void(Obj&)> mock;
1396  EXPECT_CALL(mock, Call)
1397  .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}))
1398  .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
1399 
1400  Obj obj;
1401  mock.AsStdFunction()(obj);
1402  mock.AsStdFunction()(obj);
1403  }
1404 
1405  // Mock action accepts by rvalue reference: the initial actions should receive
1406  // a non-const lvalue reference if it wants it, and the final action an rvalue
1407  // reference.
1408  {
1409  struct InitialAction {
1410  void operator()(Obj&) const {}
1411  void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1412  };
1413 
1414  MockFunction<void(Obj&&)> mock;
1415  EXPECT_CALL(mock, Call)
1416  .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
1417  .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1418 
1419  mock.AsStdFunction()(Obj{});
1420  mock.AsStdFunction()(Obj{});
1421  }
1422 
1423  // &&-qualified initial actions should also be allowed with WillOnce.
1424  {
1425  struct InitialAction {
1426  void operator()(Obj&) && {}
1427  };
1428 
1429  MockFunction<void(Obj&)> mock;
1430  EXPECT_CALL(mock, Call)
1431  .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
1432 
1433  Obj obj;
1434  mock.AsStdFunction()(obj);
1435  }
1436 
1437  {
1438  struct InitialAction {
1439  void operator()(Obj&) && {}
1440  };
1441 
1442  MockFunction<void(Obj&&)> mock;
1443  EXPECT_CALL(mock, Call)
1444  .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1445 
1446  mock.AsStdFunction()(Obj{});
1447  }
1448 }
1449 
1450 // DoAll should support being used with type-erased Action objects, both through
1451 // WillOnce and WillRepeatedly.
1452 TEST(DoAll, SupportsTypeErasedActions) {
1453  // With only type-erased actions.
1454  const Action<void()> initial_action = [] {};
1455  const Action<int()> final_action = [] { return 17; };
1456 
1457  MockFunction<int()> mock;
1458  EXPECT_CALL(mock, Call)
1459  .WillOnce(DoAll(initial_action, initial_action, final_action))
1460  .WillRepeatedly(DoAll(initial_action, initial_action, final_action));
1461 
1462  EXPECT_EQ(17, mock.AsStdFunction()());
1463 
1464  // With &&-qualified and move-only final action.
1465  {
1466  struct FinalAction {
1467  FinalAction() = default;
1468  FinalAction(FinalAction&&) = default;
1469 
1470  int operator()() && { return 17; }
1471  };
1472 
1473  EXPECT_CALL(mock, Call)
1474  .WillOnce(DoAll(initial_action, initial_action, FinalAction{}));
1475 
1476  EXPECT_EQ(17, mock.AsStdFunction()());
1477  }
1478 }
1479 
1480 // A DoAll action should be convertible to a OnceAction, even when its component
1481 // sub-actions are user-provided types that define only an Action conversion
1482 // operator. If they supposed being called more than once then they also support
1483 // being called at most once.
1484 TEST(DoAll, ConvertibleToOnceActionWithUserProvidedActionConversion) {
1485  // Simplest case: only one sub-action.
1486  struct CustomFinal final {
1487  operator Action<int()>() { // NOLINT
1488  return Return(17);
1489  }
1490 
1491  operator Action<int(int, char)>() { // NOLINT
1492  return Return(19);
1493  }
1494  };
1495 
1496  {
1497  OnceAction<int()> action = DoAll(CustomFinal{});
1498  EXPECT_EQ(17, std::move(action).Call());
1499  }
1500 
1501  {
1502  OnceAction<int(int, char)> action = DoAll(CustomFinal{});
1503  EXPECT_EQ(19, std::move(action).Call(0, 0));
1504  }
1505 
1506  // It should also work with multiple sub-actions.
1507  struct CustomInitial final {
1508  operator Action<void()>() { // NOLINT
1509  return [] {};
1510  }
1511 
1512  operator Action<void(int, char)>() { // NOLINT
1513  return [] {};
1514  }
1515  };
1516 
1517  {
1518  OnceAction<int()> action = DoAll(CustomInitial{}, CustomFinal{});
1519  EXPECT_EQ(17, std::move(action).Call());
1520  }
1521 
1522  {
1523  OnceAction<int(int, char)> action = DoAll(CustomInitial{}, CustomFinal{});
1524  EXPECT_EQ(19, std::move(action).Call(0, 0));
1525  }
1526 }
1527 
1528 // Tests using WithArgs and with an action that takes 1 argument.
1529 TEST(WithArgsTest, OneArg) {
1530  Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT
1531  EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1)));
1532  EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1)));
1533 }
1534 
1535 // Tests using WithArgs with an action that takes 2 arguments.
1536 TEST(WithArgsTest, TwoArgs) {
1537  Action<const char*(const char* s, double x, short n)> a = // NOLINT
1538  WithArgs<0, 2>(Invoke(Binary));
1539  const char s[] = "Hello";
1540  EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2))));
1541 }
1542 
1543 struct ConcatAll {
1544  std::string operator()() const { return {}; }
1545  template <typename... I>
1546  std::string operator()(const char* a, I... i) const {
1547  return a + ConcatAll()(i...);
1548  }
1549 };
1550 
1551 // Tests using WithArgs with an action that takes 10 arguments.
1552 TEST(WithArgsTest, TenArgs) {
1553  Action<std::string(const char*, const char*, const char*, const char*)> a =
1554  WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{}));
1555  EXPECT_EQ("0123210123",
1556  a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
1557  CharPtr("3"))));
1558 }
1559 
1560 // Tests using WithArgs with an action that is not Invoke().
1561 class SubtractAction : public ActionInterface<int(int, int)> {
1562  public:
1563  int Perform(const std::tuple<int, int>& args) override {
1564  return std::get<0>(args) - std::get<1>(args);
1565  }
1566 };
1567 
1568 TEST(WithArgsTest, NonInvokeAction) {
1569  Action<int(const std::string&, int, int)> a =
1570  WithArgs<2, 1>(MakeAction(new SubtractAction));
1571  std::tuple<std::string, int, int> dummy =
1572  std::make_tuple(std::string("hi"), 2, 10);
1573  EXPECT_EQ(8, a.Perform(dummy));
1574 }
1575 
1576 // Tests using WithArgs to pass all original arguments in the original order.
1577 TEST(WithArgsTest, Identity) {
1578  Action<int(int x, char y, short z)> a = // NOLINT
1579  WithArgs<0, 1, 2>(Invoke(Ternary));
1580  EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3))));
1581 }
1582 
1583 // Tests using WithArgs with repeated arguments.
1584 TEST(WithArgsTest, RepeatedArguments) {
1585  Action<int(bool, int m, int n)> a = // NOLINT
1586  WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
1587  EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10)));
1588 }
1589 
1590 // Tests using WithArgs with reversed argument order.
1591 TEST(WithArgsTest, ReversedArgumentOrder) {
1592  Action<const char*(short n, const char* input)> a = // NOLINT
1593  WithArgs<1, 0>(Invoke(Binary));
1594  const char s[] = "Hello";
1595  EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s))));
1596 }
1597 
1598 // Tests using WithArgs with compatible, but not identical, argument types.
1599 TEST(WithArgsTest, ArgsOfCompatibleTypes) {
1600  Action<long(short x, char y, double z, char c)> a = // NOLINT
1601  WithArgs<0, 1, 3>(Invoke(Ternary));
1602  EXPECT_EQ(123,
1603  a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3))));
1604 }
1605 
1606 // Tests using WithArgs with an action that returns void.
1607 TEST(WithArgsTest, VoidAction) {
1608  Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
1609  g_done = false;
1610  a.Perform(std::make_tuple(1.5, 'a', 3));
1611  EXPECT_TRUE(g_done);
1612 }
1613 
1614 TEST(WithArgsTest, ReturnReference) {
1615  Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; });
1616  int i = 0;
1617  const int& res = aa.Perform(std::forward_as_tuple(i, nullptr));
1618  EXPECT_EQ(&i, &res);
1619 }
1620 
1621 TEST(WithArgsTest, InnerActionWithConversion) {
1622  Action<Derived*()> inner = [] { return nullptr; };
1623 
1624  MockFunction<Base*(double)> mock;
1625  EXPECT_CALL(mock, Call)
1626  .WillOnce(WithoutArgs(inner))
1627  .WillRepeatedly(WithoutArgs(inner));
1628 
1629  EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
1630  EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
1631 }
1632 
1633 // It should be possible to use an &&-qualified inner action as long as the
1634 // whole shebang is used as an rvalue with WillOnce.
1635 TEST(WithArgsTest, RefQualifiedInnerAction) {
1636  struct SomeAction {
1637  int operator()(const int arg) && {
1638  EXPECT_EQ(17, arg);
1639  return 19;
1640  }
1641  };
1642 
1643  MockFunction<int(int, int)> mock;
1644  EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{}));
1645  EXPECT_EQ(19, mock.AsStdFunction()(0, 17));
1646 }
1647 
1648 #ifndef GTEST_OS_WINDOWS_MOBILE
1649 
1650 class SetErrnoAndReturnTest : public testing::Test {
1651  protected:
1652  void SetUp() override { errno = 0; }
1653  void TearDown() override { errno = 0; }
1654 };
1655 
1656 TEST_F(SetErrnoAndReturnTest, Int) {
1657  Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
1658  EXPECT_EQ(-5, a.Perform(std::make_tuple()));
1659  EXPECT_EQ(ENOTTY, errno);
1660 }
1661 
1662 TEST_F(SetErrnoAndReturnTest, Ptr) {
1663  int x;
1664  Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
1665  EXPECT_EQ(&x, a.Perform(std::make_tuple()));
1666  EXPECT_EQ(ENOTTY, errno);
1667 }
1668 
1669 TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
1670  Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
1671  EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple()));
1672  EXPECT_EQ(EINVAL, errno);
1673 }
1674 
1675 #endif // !GTEST_OS_WINDOWS_MOBILE
1676 
1677 // Tests ByRef().
1678 
1679 // Tests that the result of ByRef() is copyable.
1680 TEST(ByRefTest, IsCopyable) {
1681  const std::string s1 = "Hi";
1682  const std::string s2 = "Hello";
1683 
1684  auto ref_wrapper = ByRef(s1);
1685  const std::string& r1 = ref_wrapper;
1686  EXPECT_EQ(&s1, &r1);
1687 
1688  // Assigns a new value to ref_wrapper.
1689  ref_wrapper = ByRef(s2);
1690  const std::string& r2 = ref_wrapper;
1691  EXPECT_EQ(&s2, &r2);
1692 
1693  auto ref_wrapper1 = ByRef(s1);
1694  // Copies ref_wrapper1 to ref_wrapper.
1695  ref_wrapper = ref_wrapper1;
1696  const std::string& r3 = ref_wrapper;
1697  EXPECT_EQ(&s1, &r3);
1698 }
1699 
1700 // Tests using ByRef() on a const value.
1701 TEST(ByRefTest, ConstValue) {
1702  const int n = 0;
1703  // int& ref = ByRef(n); // This shouldn't compile - we have a
1704  // negative compilation test to catch it.
1705  const int& const_ref = ByRef(n);
1706  EXPECT_EQ(&n, &const_ref);
1707 }
1708 
1709 // Tests using ByRef() on a non-const value.
1710 TEST(ByRefTest, NonConstValue) {
1711  int n = 0;
1712 
1713  // ByRef(n) can be used as either an int&,
1714  int& ref = ByRef(n);
1715  EXPECT_EQ(&n, &ref);
1716 
1717  // or a const int&.
1718  const int& const_ref = ByRef(n);
1719  EXPECT_EQ(&n, &const_ref);
1720 }
1721 
1722 // Tests explicitly specifying the type when using ByRef().
1723 TEST(ByRefTest, ExplicitType) {
1724  int n = 0;
1725  const int& r1 = ByRef<const int>(n);
1726  EXPECT_EQ(&n, &r1);
1727 
1728  // ByRef<char>(n); // This shouldn't compile - we have a negative
1729  // compilation test to catch it.
1730 
1731  Derived d;
1732  Derived& r2 = ByRef<Derived>(d);
1733  EXPECT_EQ(&d, &r2);
1734 
1735  const Derived& r3 = ByRef<const Derived>(d);
1736  EXPECT_EQ(&d, &r3);
1737 
1738  Base& r4 = ByRef<Base>(d);
1739  EXPECT_EQ(&d, &r4);
1740 
1741  const Base& r5 = ByRef<const Base>(d);
1742  EXPECT_EQ(&d, &r5);
1743 
1744  // The following shouldn't compile - we have a negative compilation
1745  // test for it.
1746  //
1747  // Base b;
1748  // ByRef<Derived>(b);
1749 }
1750 
1751 // Tests that Google Mock prints expression ByRef(x) as a reference to x.
1752 TEST(ByRefTest, PrintsCorrectly) {
1753  int n = 42;
1754  ::std::stringstream expected, actual;
1757  EXPECT_EQ(expected.str(), actual.str());
1758 }
1759 
1760 struct UnaryConstructorClass {
1761  explicit UnaryConstructorClass(int v) : value(v) {}
1762  int value;
1763 };
1764 
1765 // Tests using ReturnNew() with a unary constructor.
1766 TEST(ReturnNewTest, Unary) {
1767  Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
1768  UnaryConstructorClass* c = a.Perform(std::make_tuple());
1769  EXPECT_EQ(4000, c->value);
1770  delete c;
1771 }
1772 
1773 TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
1774  Action<UnaryConstructorClass*(bool, int)> a =
1775  ReturnNew<UnaryConstructorClass>(4000);
1776  UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5));
1777  EXPECT_EQ(4000, c->value);
1778  delete c;
1779 }
1780 
1781 TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
1782  Action<const UnaryConstructorClass*()> a =
1783  ReturnNew<UnaryConstructorClass>(4000);
1784  const UnaryConstructorClass* c = a.Perform(std::make_tuple());
1785  EXPECT_EQ(4000, c->value);
1786  delete c;
1787 }
1788 
1789 class TenArgConstructorClass {
1790  public:
1791  TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
1792  int a8, int a9, int a10)
1793  : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
1794  int value_;
1795 };
1796 
1797 // Tests using ReturnNew() with a 10-argument constructor.
1798 TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
1799  Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>(
1800  1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90,
1801  0);
1802  TenArgConstructorClass* c = a.Perform(std::make_tuple());
1803  EXPECT_EQ(1234567890, c->value_);
1804  delete c;
1805 }
1806 
1807 std::unique_ptr<int> UniquePtrSource() { return std::make_unique<int>(19); }
1808 
1809 std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
1810  std::vector<std::unique_ptr<int>> out;
1811  out.emplace_back(new int(7));
1812  return out;
1813 }
1814 
1815 TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
1816  MockClass mock;
1817  std::unique_ptr<int> i(new int(19));
1818  EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
1819  EXPECT_CALL(mock, MakeVectorUnique())
1820  .WillOnce(Return(ByMove(VectorUniquePtrSource())));
1821  Derived* d = new Derived;
1822  EXPECT_CALL(mock, MakeUniqueBase())
1823  .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
1824 
1825  std::unique_ptr<int> result1 = mock.MakeUnique();
1826  EXPECT_EQ(19, *result1);
1827 
1828  std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1829  EXPECT_EQ(1u, vresult.size());
1830  EXPECT_NE(nullptr, vresult[0]);
1831  EXPECT_EQ(7, *vresult[0]);
1832 
1833  std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
1834  EXPECT_EQ(d, result2.get());
1835 }
1836 
1837 TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
1838  testing::MockFunction<void()> mock_function;
1839  MockClass mock;
1840  std::unique_ptr<int> i(new int(19));
1841  EXPECT_CALL(mock_function, Call());
1842  EXPECT_CALL(mock, MakeUnique())
1843  .WillOnce(DoAll(InvokeWithoutArgs(&mock_function,
1844  &testing::MockFunction<void()>::Call),
1845  Return(ByMove(std::move(i)))));
1846 
1847  std::unique_ptr<int> result1 = mock.MakeUnique();
1848  EXPECT_EQ(19, *result1);
1849 }
1850 
1851 TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
1852  MockClass mock;
1853 
1854  // Check default value
1855  DefaultValue<std::unique_ptr<int>>::SetFactory(
1856  [] { return std::make_unique<int>(42); });
1857  EXPECT_EQ(42, *mock.MakeUnique());
1858 
1859  EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
1860  EXPECT_CALL(mock, MakeVectorUnique())
1861  .WillRepeatedly(Invoke(VectorUniquePtrSource));
1862  std::unique_ptr<int> result1 = mock.MakeUnique();
1863  EXPECT_EQ(19, *result1);
1864  std::unique_ptr<int> result2 = mock.MakeUnique();
1865  EXPECT_EQ(19, *result2);
1866  EXPECT_NE(result1, result2);
1867 
1868  std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1869  EXPECT_EQ(1u, vresult.size());
1870  EXPECT_NE(nullptr, vresult[0]);
1871  EXPECT_EQ(7, *vresult[0]);
1872 }
1873 
1874 TEST(MockMethodTest, CanTakeMoveOnlyValue) {
1875  MockClass mock;
1876  auto make = [](int i) { return std::make_unique<int>(i); };
1877 
1878  EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) {
1879  return *i;
1880  });
1881  // DoAll() does not compile, since it would move from its arguments twice.
1882  // EXPECT_CALL(mock, TakeUnique(_, _))
1883  // .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}),
1884  // Return(1)));
1885  EXPECT_CALL(mock, TakeUnique(testing::Pointee(7)))
1886  .WillOnce(Return(-7))
1887  .RetiresOnSaturation();
1888  EXPECT_CALL(mock, TakeUnique(testing::IsNull()))
1889  .WillOnce(Return(-1))
1890  .RetiresOnSaturation();
1891 
1892  EXPECT_EQ(5, mock.TakeUnique(make(5)));
1893  EXPECT_EQ(-7, mock.TakeUnique(make(7)));
1894  EXPECT_EQ(7, mock.TakeUnique(make(7)));
1895  EXPECT_EQ(7, mock.TakeUnique(make(7)));
1896  EXPECT_EQ(-1, mock.TakeUnique({}));
1897 
1898  // Some arguments are moved, some passed by reference.
1899  auto lvalue = make(6);
1900  EXPECT_CALL(mock, TakeUnique(_, _))
1901  .WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) {
1902  return *i * *j;
1903  });
1904  EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7)));
1905 
1906  // The unique_ptr can be saved by the action.
1907  std::unique_ptr<int> saved;
1908  EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) {
1909  saved = std::move(i);
1910  return 0;
1911  });
1912  EXPECT_EQ(0, mock.TakeUnique(make(42)));
1913  EXPECT_EQ(42, *saved);
1914 }
1915 
1916 // It should be possible to use callables with an &&-qualified call operator
1917 // with WillOnce, since they will be called only once. This allows actions to
1918 // contain and manipulate move-only types.
1919 TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) {
1920  struct Return17 {
1921  int operator()() && { return 17; }
1922  };
1923 
1924  // Action is directly compatible with mocked function type.
1925  {
1926  MockFunction<int()> mock;
1927  EXPECT_CALL(mock, Call).WillOnce(Return17());
1928 
1929  EXPECT_EQ(17, mock.AsStdFunction()());
1930  }
1931 
1932  // Action doesn't want mocked function arguments.
1933  {
1934  MockFunction<int(int)> mock;
1935  EXPECT_CALL(mock, Call).WillOnce(Return17());
1936 
1937  EXPECT_EQ(17, mock.AsStdFunction()(0));
1938  }
1939 }
1940 
1941 // Edge case: if an action has both a const-qualified and an &&-qualified call
1942 // operator, there should be no "ambiguous call" errors. The &&-qualified
1943 // operator should be used by WillOnce (since it doesn't need to retain the
1944 // action beyond one call), and the const-qualified one by WillRepeatedly.
1945 TEST(MockMethodTest, ActionHasMultipleCallOperators) {
1946  struct ReturnInt {
1947  int operator()() && { return 17; }
1948  int operator()() const& { return 19; }
1949  };
1950 
1951  // Directly compatible with mocked function type.
1952  {
1953  MockFunction<int()> mock;
1954  EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1955 
1956  EXPECT_EQ(17, mock.AsStdFunction()());
1957  EXPECT_EQ(19, mock.AsStdFunction()());
1958  EXPECT_EQ(19, mock.AsStdFunction()());
1959  }
1960 
1961  // Ignores function arguments.
1962  {
1963  MockFunction<int(int)> mock;
1964  EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1965 
1966  EXPECT_EQ(17, mock.AsStdFunction()(0));
1967  EXPECT_EQ(19, mock.AsStdFunction()(0));
1968  EXPECT_EQ(19, mock.AsStdFunction()(0));
1969  }
1970 }
1971 
1972 // WillOnce should have no problem coping with a move-only action, whether it is
1973 // &&-qualified or not.
1974 TEST(MockMethodTest, MoveOnlyAction) {
1975  // &&-qualified
1976  {
1977  struct Return17 {
1978  Return17() = default;
1979  Return17(Return17&&) = default;
1980 
1981  Return17(const Return17&) = delete;
1982  Return17 operator=(const Return17&) = delete;
1983 
1984  int operator()() && { return 17; }
1985  };
1986 
1987  MockFunction<int()> mock;
1988  EXPECT_CALL(mock, Call).WillOnce(Return17());
1989  EXPECT_EQ(17, mock.AsStdFunction()());
1990  }
1991 
1992  // Not &&-qualified
1993  {
1994  struct Return17 {
1995  Return17() = default;
1996  Return17(Return17&&) = default;
1997 
1998  Return17(const Return17&) = delete;
1999  Return17 operator=(const Return17&) = delete;
2000 
2001  int operator()() const { return 17; }
2002  };
2003 
2004  MockFunction<int()> mock;
2005  EXPECT_CALL(mock, Call).WillOnce(Return17());
2006  EXPECT_EQ(17, mock.AsStdFunction()());
2007  }
2008 }
2009 
2010 // It should be possible to use an action that returns a value with a mock
2011 // function that doesn't, both through WillOnce and WillRepeatedly.
2012 TEST(MockMethodTest, ActionReturnsIgnoredValue) {
2013  struct ReturnInt {
2014  int operator()() const { return 0; }
2015  };
2016 
2017  MockFunction<void()> mock;
2018  EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
2019 
2020  mock.AsStdFunction()();
2021  mock.AsStdFunction()();
2022 }
2023 
2024 // Despite the fanciness around move-only actions and so on, it should still be
2025 // possible to hand an lvalue reference to a copyable action to WillOnce.
2026 TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) {
2027  MockFunction<int()> mock;
2028 
2029  const auto action = [] { return 17; };
2030  EXPECT_CALL(mock, Call).WillOnce(action);
2031 
2032  EXPECT_EQ(17, mock.AsStdFunction()());
2033 }
2034 
2035 // A callable that doesn't use SFINAE to restrict its call operator's overload
2036 // set, but is still picky about which arguments it will accept.
2037 struct StaticAssertSingleArgument {
2038  template <typename... Args>
2039  static constexpr bool CheckArgs() {
2040  static_assert(sizeof...(Args) == 1, "");
2041  return true;
2042  }
2043 
2044  template <typename... Args, bool = CheckArgs<Args...>()>
2045  int operator()(Args...) const {
2046  return 17;
2047  }
2048 };
2049 
2050 // WillOnce and WillRepeatedly should both work fine with naïve implementations
2051 // of actions that don't use SFINAE to limit the overload set for their call
2052 // operator. If they are compatible with the actual mocked signature, we
2053 // shouldn't probe them with no arguments and trip a static_assert.
2054 TEST(MockMethodTest, ActionSwallowsAllArguments) {
2055  MockFunction<int(int)> mock;
2056  EXPECT_CALL(mock, Call)
2057  .WillOnce(StaticAssertSingleArgument{})
2058  .WillRepeatedly(StaticAssertSingleArgument{});
2059 
2060  EXPECT_EQ(17, mock.AsStdFunction()(0));
2061  EXPECT_EQ(17, mock.AsStdFunction()(0));
2062 }
2063 
2064 struct ActionWithTemplatedConversionOperators {
2065  template <typename... Args>
2066  operator OnceAction<int(Args...)>() && { // NOLINT
2067  return [] { return 17; };
2068  }
2069 
2070  template <typename... Args>
2071  operator Action<int(Args...)>() const { // NOLINT
2072  return [] { return 19; };
2073  }
2074 };
2075 
2076 // It should be fine to hand both WillOnce and WillRepeatedly a function that
2077 // defines templated conversion operators to OnceAction and Action. WillOnce
2078 // should prefer the OnceAction version.
2079 TEST(MockMethodTest, ActionHasTemplatedConversionOperators) {
2080  MockFunction<int()> mock;
2081  EXPECT_CALL(mock, Call)
2082  .WillOnce(ActionWithTemplatedConversionOperators{})
2083  .WillRepeatedly(ActionWithTemplatedConversionOperators{});
2084 
2085  EXPECT_EQ(17, mock.AsStdFunction()());
2086  EXPECT_EQ(19, mock.AsStdFunction()());
2087 }
2088 
2089 // Tests for std::function based action.
2090 
2091 int Add(int val, int& ref, int* ptr) { // NOLINT
2092  int result = val + ref + *ptr;
2093  ref = 42;
2094  *ptr = 43;
2095  return result;
2096 }
2097 
2098 int Deref(std::unique_ptr<int> ptr) { return *ptr; }
2099 
2100 struct Double {
2101  template <typename T>
2102  T operator()(T t) {
2103  return 2 * t;
2104  }
2105 };
2106 
2107 std::unique_ptr<int> UniqueInt(int i) { return std::make_unique<int>(i); }
2108 
2109 TEST(FunctorActionTest, ActionFromFunction) {
2110  Action<int(int, int&, int*)> a = &Add;
2111  int x = 1, y = 2, z = 3;
2112  EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z)));
2113  EXPECT_EQ(42, y);
2114  EXPECT_EQ(43, z);
2115 
2116  Action<int(std::unique_ptr<int>)> a1 = &Deref;
2117  EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7))));
2118 }
2119 
2120 TEST(FunctorActionTest, ActionFromLambda) {
2121  Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; };
2122  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
2123  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5)));
2124 
2125  std::unique_ptr<int> saved;
2126  Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) {
2127  saved = std::move(p);
2128  };
2129  a2.Perform(std::make_tuple(UniqueInt(5)));
2130  EXPECT_EQ(5, *saved);
2131 }
2132 
2133 TEST(FunctorActionTest, PolymorphicFunctor) {
2134  Action<int(int)> ai = Double();
2135  EXPECT_EQ(2, ai.Perform(std::make_tuple(1)));
2136  Action<double(double)> ad = Double(); // Double? Double double!
2137  EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5)));
2138 }
2139 
2140 TEST(FunctorActionTest, TypeConversion) {
2141  // Numeric promotions are allowed.
2142  const Action<bool(int)> a1 = [](int i) { return i > 1; };
2143  const Action<int(bool)> a2 = Action<int(bool)>(a1);
2144  EXPECT_EQ(1, a1.Perform(std::make_tuple(42)));
2145  EXPECT_EQ(0, a2.Perform(std::make_tuple(42)));
2146 
2147  // Implicit constructors are allowed.
2148  const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); };
2149  const Action<int(const char*)> s2 = Action<int(const char*)>(s1);
2150  EXPECT_EQ(0, s2.Perform(std::make_tuple("")));
2151  EXPECT_EQ(1, s2.Perform(std::make_tuple("hello")));
2152 
2153  // Also between the lambda and the action itself.
2154  const Action<bool(std::string)> x1 = [](Unused) { return 42; };
2155  const Action<bool(std::string)> x2 = [] { return 42; };
2156  EXPECT_TRUE(x1.Perform(std::make_tuple("hello")));
2157  EXPECT_TRUE(x2.Perform(std::make_tuple("hello")));
2158 
2159  // Ensure decay occurs where required.
2160  std::function<int()> f = [] { return 7; };
2161  Action<int(int)> d = f;
2162  f = nullptr;
2163  EXPECT_EQ(7, d.Perform(std::make_tuple(1)));
2164 
2165  // Ensure creation of an empty action succeeds.
2166  Action<void(int)>(nullptr);
2167 }
2168 
2169 TEST(FunctorActionTest, UnusedArguments) {
2170  // Verify that users can ignore uninteresting arguments.
2171  Action<int(int, double y, double z)> a = [](int i, Unused, Unused) {
2172  return 2 * i;
2173  };
2174  std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44);
2175  EXPECT_EQ(6, a.Perform(dummy));
2176 }
2177 
2178 // Test that basic built-in actions work with move-only arguments.
2179 TEST(MoveOnlyArgumentsTest, ReturningActions) {
2180  Action<int(std::unique_ptr<int>)> a = Return(1);
2181  EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr)));
2182 
2183  a = testing::WithoutArgs([]() { return 7; });
2184  EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr)));
2185 
2186  Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3);
2187  int x = 0;
2188  a2.Perform(std::make_tuple(nullptr, &x));
2189  EXPECT_EQ(x, 3);
2190 }
2191 
2192 ACTION(ReturnArity) { return std::tuple_size<args_type>::value; }
2193 
2194 TEST(ActionMacro, LargeArity) {
2195  EXPECT_EQ(
2196  1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0)));
2197  EXPECT_EQ(
2198  10,
2199  testing::Action<int(int, int, int, int, int, int, int, int, int, int)>(
2200  ReturnArity())
2201  .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)));
2202  EXPECT_EQ(
2203  20,
2204  testing::Action<int(int, int, int, int, int, int, int, int, int, int, int,
2205  int, int, int, int, int, int, int, int, int)>(
2206  ReturnArity())
2207  .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
2208  14, 15, 16, 17, 18, 19)));
2209 }
2210 
2211 } // namespace
2212 } // namespace testing
2213 
2214 #if defined(_MSC_VER) && (_MSC_VER == 1900)
2216 #endif
2217 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 4503
#define EXPECT_DOUBLE_EQ(val1, val2)
Definition: gtest.h:1989
#define EXPECT_DEATH_IF_SUPPORTED(statement, regex)
PolymorphicAction< internal::ReturnNullAction > ReturnNull()
int value_
void f()
internal::IgnoredValue Unused
#define EXPECT_NONFATAL_FAILURE(statement, substr)
internal::ReturnRoundRobinAction< T > ReturnRoundRobin(std::vector< T > vals)
int SumOf4(int a, int b, int c, int d)
PolymorphicAction< internal::AssignAction< T1, T2 > > Assign(T1 *ptr, T2 val)
TEST_F(TestInfoTest, Names)
#define EXPECT_NE(val1, val2)
Definition: gtest.h:1886
static void Set(T x)
#define MOCK_METHOD0(m,...)
internal::DoAllAction< typename std::decay< Action >::type...> DoAll(Action &&...action)
#define ON_CALL(obj, call)
#define EXPECT_ANY_THROW(statement)
Definition: gtest.h:1795
internal::InvokeWithoutArgsAction< typename std::decay< FunctionImpl >::type > InvokeWithoutArgs(FunctionImpl function_impl)
is_callable_r_impl< void, R, F, Args...> is_callable_r
#define MOCK_METHOD2(m,...)
PolymorphicAction< Impl > MakePolymorphicAction(const Impl &impl)
inline::std::reference_wrapper< T > ByRef(T &l_value)
PolymorphicAction< internal::SetErrnoAndReturnAction< T > > SetErrnoAndReturn(int errval, T result)
internal::ReturnRefAction< R > ReturnRef(R &x)
expr val()
std::decay< FunctionImpl >::type Invoke(FunctionImpl &&function_impl)
#define T
Definition: Sacado_rad.hpp:553
expr expr1 expr1 expr1 c expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr1 c expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr1 c *expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr1 c expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr2 expr1 expr2 expr1 expr1 expr1 c
FloatingPoint< double > Double
#define GTEST_DISABLE_MSC_WARNINGS_PUSH_(warnings)
Definition: gtest-port.h:377
const char * p
internal::WithArgsAction< typename std::decay< InnerAction >::type > WithoutArgs(InnerAction &&action)
internal::ReturnRefOfCopyAction< R > ReturnRefOfCopy(const R &x)
TEST(GTestEnvVarTest, Dummy)
void UniversalPrint(const T &value,::std::ostream *os)
#define ACTION(name)
ADVar foo(double d, ADVar x, ADVar y)
int value
#define EXPECT_STREQ(s1, s2)
Definition: gtest.h:1953
#define MOCK_METHOD1(m,...)
void
Definition: uninit.c:105
#define EXPECT_THAT(value, matcher)
internal::DoDefaultAction DoDefault()
internal::ReturnAction< R > Return(R value)
bool *const converted_
#define EXPECT_CALL(obj, call)
#define Method
bool operator==(const Handle< T > &h1, const Handle< T > &h2)
Compare two handles.
#define EXPECT_EQ(val1, val2)
Definition: gtest.h:1884
internal::ByMoveWrapper< R > ByMove(R x)
#define In(T)
const double y
#define EXPECT_TRUE(condition)
Definition: gtest.h:1823
static void Print(const T &value,::std::ostream *os)
internal::IgnoreResultAction< A > IgnoreResult(const A &an_action)
#define FAIL()
Definition: gtest.h:1769
#define EXPECT_FALSE(condition)
Definition: gtest.h:1827
AssertionResult IsNull(const char *str)
int n
const char * Binary(const char *input, short n)
Action< F > MakeAction(ActionInterface< F > *impl)
static ExpectedAnswer expected[4]