ROL
poisson-inversion/example_01.cpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Rapid Optimization Library (ROL) Package
4 //
5 // Copyright 2014 NTESS and the ROL contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
15 #define USE_HESSVEC 1
16 
17 #include "ROL_Types.hpp"
18 #include "ROL_PoissonInversion.hpp"
19 #include "ROL_Algorithm.hpp"
20 #include "ROL_LineSearchStep.hpp"
21 #include "ROL_TrustRegionStep.hpp"
22 #include "ROL_StatusTest.hpp"
23 #include "ROL_Stream.hpp"
24 #include "Teuchos_GlobalMPISession.hpp"
25 
26 #include <iostream>
27 #include <algorithm>
28 
29 typedef double RealT;
30 
31 int main(int argc, char *argv[]) {
32 
33  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
34 
35  // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
36  int iprint = argc - 1;
37  ROL::Ptr<std::ostream> outStream;
38  ROL::nullstream bhs; // outputs nothing
39  if (iprint > 0)
40  outStream = ROL::makePtrFromRef(std::cout);
41  else
42  outStream = ROL::makePtrFromRef(bhs);
43 
44  int errorFlag = 0;
45 
46  // *** Example body.
47 
48  try {
49 
50  int dim = 128; // Set problem dimension.
52 
53  // Define algorithm.
54  ROL::ParameterList parlist;
55  std::string stepname = "Trust Region";
56  parlist.sublist("Step").sublist(stepname).set("Subproblem Solver", "Truncated CG");
57  parlist.sublist("General").sublist("Krylov").set("Iteration Limit",50);
58  parlist.sublist("General").sublist("Krylov").set("Relative Tolerance",1e-2);
59  parlist.sublist("General").sublist("Krylov").set("Absolute Tolerance",1e-4);
60  parlist.sublist("Status Test").set("Gradient Tolerance",1.e-12);
61  parlist.sublist("Status Test").set("Step Tolerance",1.e-14);
62  parlist.sublist("Status Test").set("Iteration Limit",100);
63  ROL::Ptr<ROL::Step<RealT>>
64  step = ROL::makePtr<ROL::TrustRegionStep<RealT>>(parlist);
65  ROL::Ptr<ROL::StatusTest<RealT>>
66  status = ROL::makePtr<ROL::StatusTest<RealT>>(parlist);
67  ROL::Algorithm<RealT> algo(step,status,false);
68 
69  // Iteration vector.
70  ROL::Ptr<std::vector<RealT> > x_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
71  // Set initial guess.
72  for (int i=0; i<dim; i++) {
73  (*x_ptr)[i] = 0.1;
74  }
75  ROL::StdVector<RealT> x(x_ptr);
76 
77  // Run algorithm.
78  algo.run(x, obj, true, *outStream);
79 
80  // Compute dense Hessian matrix.
81  Teuchos::SerialDenseMatrix<int, RealT> H(x.dimension(), x.dimension());
82  H = ROL::computeDenseHessian<RealT>(obj, x);
83  //H.print(*outStream);
84 
85  // Compute and print eigenvalues.
86  std::vector<std::vector<RealT> > eigenvals = ROL::computeEigenvalues<RealT>(H);
87 
88  *outStream << "\nEigenvalues:\n";
89  for (unsigned i=0; i<(eigenvals[0]).size(); i++) {
90  if (i==0) {
91  *outStream << std::right
92  << std::setw(28) << "Real"
93  << std::setw(28) << "Imag"
94  << "\n";
95  }
96  *outStream << std::scientific << std::setprecision(16) << std::right
97  << std::setw(28) << (eigenvals[0])[i]
98  << std::setw(28) << (eigenvals[1])[i]
99  << "\n";
100  }
101 
102  // Compute and print generalized eigenvalues.
103  Teuchos::SerialDenseMatrix<int, RealT> M = computeDotMatrix(x);
104  //M.print(*outStream);
105  std::vector<std::vector<RealT> > genEigenvals = ROL::computeGenEigenvalues<RealT>(H, M);
106 
107  *outStream << "\nGeneralized eigenvalues:\n";
108  for (unsigned i=0; i<(genEigenvals[0]).size(); i++) {
109  if (i==0) {
110  *outStream << std::right
111  << std::setw(28) << "Real"
112  << std::setw(28) << "Imag"
113  << "\n";
114  }
115  *outStream << std::scientific << std::setprecision(16) << std::right
116  << std::setw(28) << (genEigenvals[0])[i]
117  << std::setw(28) << (genEigenvals[1])[i]
118  << "\n";
119  }
120 
121  // Sort and compare eigenvalues and generalized eigenvalues - should be close.
122  std::sort((eigenvals[0]).begin(), (eigenvals[0]).end());
123  std::sort((eigenvals[1]).begin(), (eigenvals[1]).end());
124  std::sort((genEigenvals[0]).begin(), (genEigenvals[0]).end());
125  std::sort((genEigenvals[1]).begin(), (genEigenvals[1]).end());
126 
127  RealT errtol = std::sqrt(ROL::ROL_EPSILON<RealT>());
128  for (unsigned i=0; i<(eigenvals[0]).size(); i++) {
129  if ( std::abs( (genEigenvals[0])[i] - (eigenvals[0])[i] ) > errtol*((eigenvals[0])[i]+ROL::ROL_THRESHOLD<RealT>()) ) {
130  errorFlag++;
131  *outStream << std::scientific << std::setprecision(20) << "Real genEigenvals - eigenvals (" << i << ") = " << std::abs( (genEigenvals[0])[i] - (eigenvals[0])[i] ) << " > " << errtol*((eigenvals[0])[i]+1e4*ROL::ROL_THRESHOLD<RealT>()) << "\n";
132  }
133  if ( std::abs( (genEigenvals[1])[i] - (eigenvals[1])[i] ) > errtol*((eigenvals[1])[i]+ROL::ROL_THRESHOLD<RealT>()) ) {
134  errorFlag++;
135  *outStream << std::scientific << std::setprecision(20) << "Imag genEigenvals - eigenvals (" << i << ") = " << std::abs( (genEigenvals[1])[i] - (eigenvals[1])[i] ) << " > " << errtol*((eigenvals[1])[i]+ROL::ROL_THRESHOLD<RealT>()) << "\n";
136  }
137  }
138 
139  // Compute inverse of Hessian.
140  Teuchos::SerialDenseMatrix<int, RealT> invH = ROL::computeInverse<RealT>(H);
141  Teuchos::SerialDenseMatrix<int, RealT> HinvH(H);
142 
143  // Multiply with Hessian and verify that it gives the identity (l2 dot matrix M from above).
144  HinvH.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, H, invH, 0.0);
145  //*outStream << std::scientific << std::setprecision(6); HinvH.print(*outStream);
146  HinvH -= M;
147  if (HinvH.normOne() > errtol) {
148  errorFlag++;
149  *outStream << std::scientific << std::setprecision(20) << "1-norm of H*inv(H) - I = " << HinvH.normOne() << " > " << errtol << "\n";
150  }
151 
152  // Use Newton algorithm with line search.
153  stepname = "Line Search";
154  parlist.sublist("Step").sublist(stepname).sublist("Descent Method").set("Type", "Newton's Method");
155  ROL::Ptr<ROL::Step<RealT>>
156  newton_step = ROL::makePtr<ROL::LineSearchStep<RealT>>(parlist);
157  ROL::Ptr<ROL::StatusTest<RealT>>
158  newton_status = ROL::makePtr<ROL::StatusTest<RealT>>(parlist);
159  ROL::Algorithm<RealT> newton_algo(newton_step,newton_status,false);
160 
161  // Reset initial guess.
162  for (int i=0; i<dim; i++) {
163  (*x_ptr)[i] = 0.1;
164  }
165 
166  // Run Newton algorithm.
167  newton_algo.run(x, obj, true, *outStream);
168 
169  ROL::Ptr<const ROL::AlgorithmState<RealT> > new_state = newton_algo.getState();
170  ROL::Ptr<const ROL::AlgorithmState<RealT> > old_state = algo.getState();
171  *outStream << "old_optimal_value = " << old_state->value << std::endl;
172  *outStream << "new_optimal_value = " << new_state->value << std::endl;
173  if ( std::abs(new_state->value - old_state->value) / std::abs(old_state->value) > errtol ) {
174  errorFlag++;
175  *outStream << std::scientific << std::setprecision(20) << "\nabs(new_optimal_value - old_optimal_value) / abs(old_optimal_value) = " << std::abs(new_state->value - old_state->value) / std::abs(old_state->value) << " > " << errtol << "\n";
176  }
177 
178  }
179  catch (std::logic_error& err) {
180  *outStream << err.what() << "\n";
181  errorFlag = -1000;
182  }; // end try
183 
184  if (errorFlag != 0)
185  std::cout << "End Result: TEST FAILED\n";
186  else
187  std::cout << "End Result: TEST PASSED\n";
188 
189  return 0;
190 
191 }
192 
Contains definitions of custom data types in ROL.
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
basic_nullstream< char, std::char_traits< char >> nullstream
Definition: ROL_Stream.hpp:36
Contains definitions for Poisson material inversion.
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Provides an interface to run optimization algorithms.
int dimension() const
Return dimension of the vector space.
Teuchos::SerialDenseMatrix< int, Real > computeDotMatrix(const Vector< Real > &x)
int main(int argc, char *argv[])
constexpr auto dim