ROL
poisson-control/example_03.cpp
Go to the documentation of this file.
1 
2 // Burgers includes
3 #include "example_02.hpp"
4 // ROL includes
5 #include "ROL_StdVector.hpp"
6 #include "ROL_StdTeuchosBatchManager.hpp"
9 #include "ROL_ParameterList.hpp"
10 #include "ROL_Solver.hpp"
12 #include "ROL_PrimalDualRisk.hpp"
13 
14 // Teuchos includes
15 #include "Teuchos_Time.hpp"
16 #include "ROL_Stream.hpp"
17 #include "Teuchos_GlobalMPISession.hpp"
18 #include "Teuchos_Comm.hpp"
19 #include "Teuchos_DefaultComm.hpp"
20 #include "Teuchos_CommHelpers.hpp"
21 
22 int main( int argc, char *argv[] ) {
23 
24  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
25 
26  auto comm = ROL::toPtr( Teuchos::DefaultComm<int>::getComm() );
27 
28  // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
29  int iprint = argc - 1;
30  ROL::Ptr<std::ostream> outStream;
31  ROL::nullstream bhs; // outputs nothing
32  if (iprint > 0 && comm->getRank()==0)
33  outStream = ROL::makePtrFromRef(std::cout);
34  else
35  outStream = ROL::makePtrFromRef(bhs);
36 
37  int errorFlag = 0;
38 
39  // *** Example body.
40 
41  try {
42 
43  /***************************************************************************/
44  /***************** GRAB INPUTS *********************************************/
45  /***************************************************************************/
46  // Get finite element parameter list
47  std::string filename = "input_ex03.xml";
48  auto parlist = ROL::getParametersFromXmlFile( filename );
49 
50  if ( parlist->sublist("Problem Data").get("Display Option",0) && (comm->getRank() > 0) ) {
51  parlist->set("Display Option",0);
52  }
53 
54  /***************************************************************************/
55  /***************** INITIALIZE SAMPLERS *************************************/
56  /***************************************************************************/
57  int dim = 2;
58  int nSamp = parlist->sublist("Problem Data").get("Number of Monte Carlo Samples",1000);
59  std::vector<double> tmp(2); tmp[0] = -1.0; tmp[1] = 1.0;
60  std::vector<std::vector<double> > bounds(dim,tmp);
61  ROL::Ptr<ROL::BatchManager<double> > bman
62  = ROL::makePtr<ROL::StdTeuchosBatchManager<double,int>>(comm);
63  ROL::Ptr<ROL::SampleGenerator<double> > sampler
64  = ROL::makePtr<ROL::MonteCarloGenerator<double>>(nSamp,bounds,bman,false);
65 
66  /***************************************************************************/
67  /***************** INITIALIZE CONTROL VECTOR *******************************/
68  /***************************************************************************/
69  int nx = parlist->sublist("Problem Data").get("Number of Elements", 128);
70  ROL::Ptr<std::vector<double> > z_ptr = ROL::makePtr<std::vector<double>>(nx+1, 0.0);
71  ROL::Ptr<ROL::Vector<double> > z = ROL::makePtr<ROL::StdVector<double>>(z_ptr);
72  ROL::Ptr<ROL::Vector<double> > u = ROL::makePtr<ROL::StdVector<double>>(nx-1);
73  ROL::Ptr<ROL::Vector<double> > p = ROL::makePtr<ROL::StdVector<double>>(nx-1);
74 
75  /***************************************************************************/
76  /***************** INITIALIZE OBJECTIVE FUNCTION ***************************/
77  /***************************************************************************/
78  double alpha = parlist->sublist("Problem Data").get("Penalty Parameter", 1.e-4);
79  ROL::Ptr<FEM<double> > fem = ROL::makePtr<FEM<double>>(nx);
80  ROL::Ptr<ROL::Objective_SimOpt<double> > pObj
81  = ROL::makePtr<DiffusionObjective<double>>(fem, alpha);
82  ROL::Ptr<ROL::Constraint_SimOpt<double> > pCon
83  = ROL::makePtr<DiffusionConstraint<double>>(fem);
84  ROL::Ptr<ROL::Objective<double> > robj
85  = ROL::makePtr<ROL::Reduced_Objective_SimOpt<double>>(pObj,pCon,u,z,p);
86  robj->setParameter({0.0,0.0});
87 
88  /***************************************************************************/
89  /***************** INITIALIZE ROL ALGORITHM ********************************/
90  /***************************************************************************/
91  bool runBundle = parlist->sublist("Problem Data").get("Run Bundle",false);
92  // Solve using bundle
93  if (runBundle) {
94  z->zero();
95  ROL::Ptr<ROL::StochasticProblem<double>> problem2
96  = ROL::makePtr<ROL::StochasticProblem<double>>(robj, z);
97  problem2->makeObjectiveStochastic(*parlist, sampler);
98  problem2->finalize(false,true,*outStream);
99  parlist->sublist("Step").set("Type","Bundle");
100  parlist->sublist("Step").sublist("Bundle").set("Distance Measure Coefficient",0.0);
101  ROL::Solver<double> solver2(problem2,*parlist);
102  solver2.solve(*outStream);
103  }
104 
105  ROL::Ptr<ROL::Problem<double>> problem
106  = ROL::makePtr<ROL::Problem<double>>(robj, z);
107  ROL::PrimalDualRisk<double> solver(problem, sampler, *parlist);
108  if (parlist->sublist("Problem Data").get("Run Derivative Check",false)) {
109  problem->check(true,*outStream);
110  solver.check(*outStream);
111  }
112  solver.run(*outStream);
113 
114  /***************************************************************************/
115  /***************** PRINT RESULTS *******************************************/
116  /***************************************************************************/
117  int my_number_samples = sampler->numMySamples(), number_samples = 0;
118  Teuchos::reduceAll<int,int>(*comm,Teuchos::REDUCE_SUM,1,&my_number_samples,&number_samples);
119  int my_number_solves = ROL::dynamicPtrCast<DiffusionConstraint<double> >(pCon)->getNumSolves(), number_solves = 0;
120  Teuchos::reduceAll<int,int>(*comm,Teuchos::REDUCE_SUM,1,&my_number_solves,&number_solves);
121  if (comm->getRank() == 0) {
122  std::cout << "Number of Samples = " << number_samples << "\n";
123  std::cout << "Number of Solves = " << number_solves << "\n";
124  }
125 
126  if ( comm->getRank() == 0 ) {
127  std::ofstream file;
128  file.open("control.txt");
129  std::vector<double> xmesh(fem->nz(),0.0);
130  fem->build_mesh(xmesh);
131  for (int i = 0; i < fem->nz(); i++ ) {
132  file << std::setprecision(std::numeric_limits<double>::digits10) << std::scientific << xmesh[i] << " "
133  << std::setprecision(std::numeric_limits<double>::digits10) << std::scientific << (*z_ptr)[i]
134  << "\n";
135  }
136  file.close();
137  }
138  }
139  catch (std::logic_error& err) {
140  *outStream << err.what() << "\n";
141  errorFlag = -1000;
142  }; // end try
143 
144  if (errorFlag != 0)
145  std::cout << "End Result: TEST FAILED\n";
146  else
147  std::cout << "End Result: TEST PASSED\n";
148 
149  return 0;
150 }
151 
152 
153 
154 
Provides a simplified interface for solving a wide range of optimization problems.
Definition: ROL_Solver.hpp:64
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
int solve(const Ptr< StatusTest< Real >> &status=nullPtr, bool combineStatus=true)
Solve optimization problem with no iteration output.
basic_nullstream< char, char_traits< char >> nullstream
Definition: ROL_Stream.hpp:72
int main(int argc, char *argv[])
constexpr auto dim