17 #include "ROL_StdTeuchosBatchManager.hpp"
23 #include "ROL_ParameterList.hpp"
26 #include "Teuchos_Time.hpp"
28 #include "Teuchos_GlobalMPISession.hpp"
29 #include "Teuchos_Comm.hpp"
30 #include "Teuchos_DefaultComm.hpp"
31 #include "Teuchos_CommHelpers.hpp"
33 int main(
int argc,
char *argv[] ) {
35 Teuchos::GlobalMPISession mpiSession(&argc, &argv);
37 auto comm = ROL::toPtr( Teuchos::DefaultComm<int>::getComm() );
40 int iprint = argc - 1;
41 ROL::Ptr<std::ostream> outStream;
44 outStream = ROL::makePtrFromRef(std::cout);
46 outStream = ROL::makePtrFromRef(bhs);
58 std::string filename =
"example_02.xml";
59 auto parlist = ROL::getParametersFromXmlFile( filename );
61 if ( parlist->get(
"Display Option",0) && (comm->getRank() > 0) ) {
62 parlist->set(
"Display Option",0);
65 filename =
"input.xml";
66 auto ROL_parlist = ROL::getParametersFromXmlFile( filename );
72 bool useSA = parlist->get(
"Use Stochastic Approximation",
false);
75 nSamp = parlist->get(
"Number of Monte Carlo Samples",1000);
77 std::vector<double> tmp(2); tmp[0] = -1.0; tmp[1] = 1.0;
78 std::vector<std::vector<double> > bounds(dim,tmp);
79 ROL::Ptr<ROL::BatchManager<double> > bman
80 = ROL::makePtr<ROL::StdTeuchosBatchManager<double,int>>(comm);
81 ROL::Ptr<ROL::SampleGenerator<double> > sampler
82 = ROL::makePtr<ROL::MonteCarloGenerator<double>>(nSamp,bounds,bman,useSA);
87 int nx = parlist->get(
"Number of Elements", 128);
88 ROL::Ptr<std::vector<double> > z_ptr = ROL::makePtr<std::vector<double>>(nx+1, 0.0);
89 ROL::Ptr<ROL::Vector<double> > z = ROL::makePtr<ROL::StdVector<double>>(z_ptr);
90 ROL::Ptr<std::vector<double> > u_ptr = ROL::makePtr<std::vector<double>>(nx-1, 0.0);
91 ROL::Ptr<ROL::Vector<double> > u = ROL::makePtr<ROL::StdVector<double>>(u_ptr);
93 ROL::Ptr<std::vector<double> > p_ptr = ROL::makePtr<std::vector<double>>(nx-1, 0.0);
94 ROL::Ptr<ROL::Vector<double> > p = ROL::makePtr<ROL::StdVector<double>>(p_ptr);
95 ROL::Ptr<std::vector<double> > U_ptr = ROL::makePtr<std::vector<double>>(nx+1, 35.0);
96 ROL::Ptr<ROL::Vector<double> > U = ROL::makePtr<ROL::StdVector<double>>(U_ptr);
97 ROL::Ptr<std::vector<double> > L_ptr = ROL::makePtr<std::vector<double>>(nx+1, -5.0);
98 ROL::Ptr<ROL::Vector<double> > L = ROL::makePtr<ROL::StdVector<double>>(L_ptr);
104 double alpha = parlist->get(
"Penalty Parameter", 1.e-4);
105 ROL::Ptr<FEM<double> > fem = ROL::makePtr<FEM<double>>(nx);
106 ROL::Ptr<ROL::Objective_SimOpt<double> > pObj
107 = ROL::makePtr<DiffusionObjective<double>>(fem, alpha);
108 ROL::Ptr<ROL::Constraint_SimOpt<double> > pCon
109 = ROL::makePtr<DiffusionConstraint<double>>(fem);
110 ROL::Ptr<ROL::Objective<double> > robj
111 = ROL::makePtr<ROL::Reduced_Objective_SimOpt<double>>(pObj,pCon,u,z,p);
117 if (parlist->get(
"Run Derivative Check",
false)) {
119 ROL::Ptr<std::vector<double> > dz_ptr = ROL::makePtr<std::vector<double>>(nx+1, 0.0);
120 ROL::Ptr<ROL::Vector<double> > dz = ROL::makePtr<ROL::StdVector<double>>(dz_ptr);
121 ROL::Ptr<std::vector<double> > du_ptr = ROL::makePtr<std::vector<double>>(nx-1, 0.0);
122 ROL::Ptr<ROL::Vector<double> > du = ROL::makePtr<ROL::StdVector<double>>(du_ptr);
126 for (
int i=0; i<nx+1; i++) {
127 (*dz_ptr)[i] = 2.0*(double)rand()/(double)RAND_MAX - 1.0;
128 (*z_ptr)[i] = 2.0*(double)rand()/(double)RAND_MAX - 1.0;
130 for (
int i=0; i<nx-1; i++) {
131 (*du_ptr)[i] = 2.0*(double)rand()/(double)RAND_MAX - 1.0;
132 (*u_ptr)[i] = 2.0*(double)rand()/(double)RAND_MAX - 1.0;
135 std::vector<double> param(dim,0.0);
136 robj->setParameter(param);
137 if ( comm->getRank() == 0 ) {
138 std::cout <<
"\nRUN DERIVATIVE CHECK FOR PARAMETRIZED OBJECTIVE FUNCTION SIMOPT\n";
140 pObj->checkGradient(x,d,(comm->getRank()==0));
141 pObj->checkHessVec(x,d,(comm->getRank()==0));
142 if ( comm->getRank() == 0 ) {
143 std::cout <<
"\nRUN DERIVATIVE CHECK FOR PARAMETRIZED EQUALITY CONSTRAINT SIMOPT\n";
145 pCon->checkApplyJacobian(x,d,*p,(comm->getRank()==0));
146 pCon->checkApplyAdjointJacobian(x,*du,*p,x,(comm->getRank()==0));
147 pCon->checkApplyAdjointHessian(x,*du,d,x,(comm->getRank()==0));
148 if ( comm->getRank() == 0 ) {
149 std::cout <<
"\nRUN DERIVATIVE CHECK FOR PARAMETRIZED OBJECTIVE FUNCTION\n";
151 robj->checkGradient(*z,*dz,(comm->getRank()==0));
152 robj->checkHessVec(*z,*dz,(comm->getRank()==0));
154 if ( comm->getRank() == 0 ) {
155 std::cout <<
"\nRUN DERIVATIVE CHECK FOR RISK-NEUTRAL OBJECTIVE FUNCTION\n";
157 obj.checkGradient(*z,*dz,(comm->getRank()==0));
158 obj.checkHessVec(*z,*dz,(comm->getRank()==0));
164 ROL::Ptr<ROL::Algorithm<double>> algo;
165 ROL::Ptr<ROL::Step<double>> step;
166 ROL::Ptr<ROL::StatusTest<double>> status;
168 ROL_parlist->sublist(
"General").set(
"Recompute Objective Function",
false);
169 ROL_parlist->sublist(
"Step").sublist(
"Line Search").set(
"Initial Step Size",0.1/alpha);
170 ROL_parlist->sublist(
"Step").sublist(
"Line Search").set(
"User Defined Initial Step Size",
true);
171 ROL_parlist->sublist(
"Step").sublist(
"Line Search").sublist(
"Line-Search Method").set(
"Type",
"Iteration Scaling");
172 ROL_parlist->sublist(
"Step").sublist(
"Line Search").sublist(
"Descent Method").set(
"Type",
"Steepest Descent");
173 ROL_parlist->sublist(
"Step").sublist(
"Line Search").sublist(
"Curvature Condition").set(
"Type",
"Null Curvature Condition");
174 status = ROL::makePtr<ROL::StatusTest<double>>(*ROL_parlist);
175 step = ROL::makePtr<ROL::LineSearchStep<double>>(*ROL_parlist);
176 algo = ROL::makePtr<ROL::Algorithm<double>>(step,status,
false);
179 status = ROL::makePtr<ROL::StatusTest<double>>(*ROL_parlist);
180 step = ROL::makePtr<ROL::TrustRegionStep<double>>(*ROL_parlist);
181 algo = ROL::makePtr<ROL::Algorithm<double>>(step,status,
false);
187 Teuchos::Time timer(
"Optimization Time",
true);
189 algo->run(*z,obj,bnd,(comm->getRank()==0));
190 double optTime = timer.stop();
195 int my_number_samples = sampler->numMySamples(), number_samples = 0;
196 Teuchos::reduceAll<int,int>(*comm,Teuchos::REDUCE_SUM,1,&my_number_samples,&number_samples);
197 int my_number_solves = ROL::dynamicPtrCast<DiffusionConstraint<double> >(pCon)->getNumSolves(), number_solves = 0;
198 Teuchos::reduceAll<int,int>(*comm,Teuchos::REDUCE_SUM,1,&my_number_solves,&number_solves);
199 if (comm->getRank() == 0) {
200 std::cout <<
"Number of Samples = " << number_samples <<
"\n";
201 std::cout <<
"Number of Solves = " << number_solves <<
"\n";
202 std::cout <<
"Optimization Time = " << optTime <<
"\n\n";
205 if ( comm->getRank() == 0 ) {
208 file.open(
"control_SA.txt");
211 file.open(
"control_SAA.txt");
213 std::vector<double> xmesh(fem->nz(),0.0);
214 fem->build_mesh(xmesh);
215 for (
int i = 0; i < fem->nz(); i++ ) {
216 file << std::setprecision(std::numeric_limits<double>::digits10) << std::scientific << xmesh[i] <<
" "
217 << std::setprecision(std::numeric_limits<double>::digits10) << std::scientific << (*z_ptr)[i]
223 catch (std::logic_error& err) {
224 *outStream << err.what() <<
"\n";
229 std::cout <<
"End Result: TEST FAILED\n";
231 std::cout <<
"End Result: TEST PASSED\n";
Defines the linear algebra or vector space interface for simulation-based optimization.
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
basic_nullstream< char, std::char_traits< char >> nullstream
Provides the elementwise interface to apply upper and lower bound constraints.
int main(int argc, char *argv[])