Panzer  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Panzer_Integrator_GradBasisCrossVector_impl.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ***********************************************************************
3 //
4 // Panzer: A partial differential equation assembly
5 // engine for strongly coupled complex multiphysics systems
6 // Copyright (2011) Sandia Corporation
7 //
8 // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
9 // the U.S. Government retains certain rights in this software.
10 //
11 // Redistribution and use in source and binary forms, with or without
12 // modification, are permitted provided that the following conditions are
13 // met:
14 //
15 // 1. Redistributions of source code must retain the above copyright
16 // notice, this list of conditions and the following disclaimer.
17 //
18 // 2. Redistributions in binary form must reproduce the above copyright
19 // notice, this list of conditions and the following disclaimer in the
20 // documentation and/or other materials provided with the distribution.
21 //
22 // 3. Neither the name of the Corporation nor the names of the
23 // contributors may be used to endorse or promote products derived from
24 // this software without specific prior written permission.
25 //
26 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 //
38 // Questions? Contact Roger P. Pawlowski (rppawlo@sandia.gov) and
39 // Eric C. Cyr (eccyr@sandia.gov)
40 // ***********************************************************************
41 // @HEADER
42 
43 #ifndef PANZER_EVALUATOR_GRADBASISCROSSVECTOR_IMPL_HPP
44 #define PANZER_EVALUATOR_GRADBASISCROSSVECTOR_IMPL_HPP
45 
47 //
48 // Include Files
49 //
51 
52 // Intrepid2
53 #include "Intrepid2_FunctionSpaceTools.hpp"
54 
55 // Kokkos
56 #include "Kokkos_ViewFactory.hpp"
57 
58 // Panzer
59 #include "Panzer_BasisIRLayout.hpp"
62 
63 namespace panzer
64 {
66  //
67  // Constructor
68  //
70  template<typename EvalT, typename Traits>
74  const std::vector<std::string>& resNames,
75  const std::string& vecName,
76  const panzer::BasisIRLayout& basis,
77  const panzer::IntegrationRule& ir,
78  const double& multiplier, /* = 1 */
79  const std::vector<std::string>& fmNames, /* =
80  std::vector<std::string>() */
81  const Teuchos::RCP<PHX::DataLayout>& vecDL /* = Teuchos::null */)
82  :
83  evalStyle_(evalStyle),
84  multiplier_(multiplier),
85  numDims_(resNames.size()),
86  numGradDims_(ir.dl_vector->extent(2)),
87  basisName_(basis.name())
88  {
89  using PHX::View;
90  using panzer::BASIS;
91  using panzer::Cell;
93  using panzer::IP;
94  using PHX::DataLayout;
95  using PHX::Device;
96  using PHX::DevLayout;
97  using PHX::MDField;
98  using std::invalid_argument;
99  using std::logic_error;
100  using std::size_t;
101  using std::string;
102  using Teuchos::RCP;
103 
104  // Ensure the input makes sense.
105  TEUCHOS_TEST_FOR_EXCEPTION(numDims_ != 3, invalid_argument, "Error: " \
106  "Integrator_GradBasisCrossVector called with the number of residual " \
107  "names not equal to three.")
108  for (const auto& name : resNames)
109  TEUCHOS_TEST_FOR_EXCEPTION(name == "", invalid_argument, "Error: " \
110  "Integrator_GradBasisCrossVector called with an empty residual name.")
111  TEUCHOS_TEST_FOR_EXCEPTION(vecName == "", invalid_argument, "Error: " \
112  "Integrator_GradBasisCrossVector called with an empty vector name.")
113  RCP<const PureBasis> tmpBasis = basis.getBasis();
114  TEUCHOS_TEST_FOR_EXCEPTION(not tmpBasis->supportsGrad(), logic_error,
115  "Error: Integrator_GradBasisCrossVector: Basis of type \""
116  << tmpBasis->name() << "\" does not support the gradient operator.")
117  RCP<DataLayout> tmpVecDL = ir.dl_vector;
118  if (not vecDL.is_null())
119  {
120  tmpVecDL = vecDL;
122  tmpVecDL->extent(2) < ir.dl_vector->extent(2), logic_error,
123  "Error: Integrator_GradBasisCrossVector: Dimension of space " \
124  "exceeds dimension of Vector Data Layout.")
126  static_cast<int>(vecDL->extent(2)), logic_error, "Error: " \
127  "Integrator_GradBasisCrossVector: The vector must be the same " \
128  "length as the number of residuals.")
129  } // end if (not vecDL.is_null())
131  "Error: Integrator_GradBasisCrossVector: The vector must have at " \
132  "least as many components as there are dimensions in the mesh.")
133 
134  // Create the field for the vector-valued function we're integrating.
135  vector_ = MDField<const ScalarT, Cell, IP, Dim>(vecName, tmpVecDL);
136  this->addDependentField(vector_);
137 
138  // Create the fields that we're either contributing to or evaluating
139  // (storing).
140  fields_host_.resize(resNames.size());
141  fields_ = OuterView("Integrator_GradBasisCrossVector::fields_", resNames.size());
142  {
143  int i=0;
144  for (const auto& name : resNames)
145  fields_host_[i++] = MDField<ScalarT, Cell, BASIS>(name, basis.functional);
146  } // end loop over resNames
147 
148  for (std::size_t i=0; i< fields_.extent(0); ++i) {
149  const auto& field = fields_host_[i];
151  this->addContributedField(field);
152  else // if (evalStyle_ == EvaluatorStyle::EVALUATES)
153  this->addEvaluatedField(field);
154  }
155 
156  // Add the dependent field multipliers, if there are any.
157  int i = 0;
158  fieldMults_.resize(fmNames.size());
159  kokkosFieldMults_ = PHX::View<PHX::UnmanagedView<const ScalarT**>*>("GradBasisCrossVector::KokkosFieldMultipliers", fmNames.size());
160  for (const auto& name : fmNames)
161  {
162  fieldMults_[i++] = MDField<const ScalarT, Cell, IP>(name, ir.dl_scalar);
163  this->addDependentField(fieldMults_[i - 1]);
164  } // end loop over the field multipliers
165 
166  // Set the name of this object.
167  string n("Integrator_GradBasisCrossVector (");
169  n += "CONTRIBUTES";
170  else // if (evalStyle_ == EvaluatorStyle::EVALUATES)
171  n += "EVALUATES";
172  n += "): {";
173  for (size_t j=0; j < fields_host_.size() - 1; ++j)
174  n += resNames[j] + ", ";
175  n += resNames[resNames.size()-1] + "}";
176  this->setName(n);
177  } // end of Constructor
178 
180  //
181  // ParameterList Constructor
182  //
184  template<typename EvalT, typename Traits>
187  const Teuchos::ParameterList& p)
188  :
190  panzer::EvaluatorStyle::EVALUATES,
191  p.get<const std::vector<std::string>>("Residual Names"),
192  p.get<std::string>("Vector Name"),
193  (*p.get<Teuchos::RCP<panzer::BasisIRLayout>>("Basis")),
194  (*p.get<Teuchos::RCP<panzer::IntegrationRule>>("IR")),
195  p.get<double>("Multiplier"),
196  p.isType<Teuchos::RCP<const std::vector<std::string>>>
197  ("Field Multipliers") ?
198  (*p.get<Teuchos::RCP<const std::vector<std::string>>>
199  ("Field Multipliers")) : std::vector<std::string>(),
200  p.isType<Teuchos::RCP<PHX::DataLayout>>("Data Layout Vector") ?
201  p.get<Teuchos::RCP<PHX::DataLayout>>("Data Layout Vector") :
202  Teuchos::null)
203  {
205  using Teuchos::RCP;
206 
207  // Ensure that the input ParameterList didn't contain any bogus entries.
208  RCP<ParameterList> validParams = this->getValidParameters();
209  p.validateParameters(*validParams);
210  } // end of ParameterList Constructor
211 
213  //
214  // postRegistrationSetup()
215  //
217  template<typename EvalT, typename Traits>
218  void
221  typename Traits::SetupData sd,
222  PHX::FieldManager<Traits>& /* fm */)
223  {
225  using panzer::getBasisIndex;
226 
227  // Get the PHX::Views of the fields.
228  auto fields_host_mirror_ = Kokkos::create_mirror_view(fields_);
229  for (size_t i=0; i < fields_host_.size(); ++i) {
230  fields_host_mirror_(i) = fields_host_[i].get_static_view();
231  }
232  Kokkos::deep_copy(fields_,fields_host_mirror_);
233 
234  // Get the PHX::Views of the field multipliers.
235  auto field_mults_host_mirror_ = Kokkos::create_mirror_view(kokkosFieldMults_);
236  for (size_t i=0; i < fieldMults_.size(); ++i)
237  field_mults_host_mirror_(i) = fieldMults_[i].get_static_view();
238  Kokkos::deep_copy(kokkosFieldMults_,field_mults_host_mirror_);
239 
240  // Determine the index in the Workset bases for our particular basis name.
241  basisIndex_ = getBasisIndex(basisName_, (*sd.worksets_)[0], this->wda);
242  } // end of postRegistrationSetup()
243 
245  //
246  // operator()()
247  //
249  template<typename EvalT, typename Traits>
250  template<int NUM_FIELD_MULT>
251  KOKKOS_INLINE_FUNCTION
252  void
255  const FieldMultTag<NUM_FIELD_MULT>& /* tag */,
256  const size_t& cell) const
257  {
259 
260  // Initialize the evaluated fields.
261  const int numBases(fields_[0].extent(1)), numQP(vector_.extent(1));
262  if (evalStyle_ == EvaluatorStyle::EVALUATES)
263  for (int dim(0); dim < numDims_; ++dim)
264  for (int basis(0); basis < numBases; ++basis)
265  fields_[dim](cell, basis) = 0.0;
266 
267  // The following if-block is for the sake of optimization depending on the
268  // number of field multipliers.
269  ScalarT tmp[3];
270  const int X(0), Y(1), Z(2);
271  if (NUM_FIELD_MULT == 0)
272  {
273  if (numGradDims_ == 1)
274  {
275  for (int qp(0); qp < numQP; ++qp)
276  {
277  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
278  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
279  for (int basis(0); basis < numBases; ++basis)
280  {
281  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
282  fields_[Z](cell, basis) += -tmp[Y] * basis_(cell, basis, qp, X);
283  } // end loop over the bases
284  } // end loop over the quadrature points
285  }
286  else if (numGradDims_ == 2)
287  {
288  for (int qp(0); qp < numQP; ++qp)
289  {
290  tmp[X] = multiplier_ * vector_(cell, qp, X);
291  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
292  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
293  for (int basis(0); basis < numBases; ++basis)
294  {
295  fields_[X](cell, basis) += -tmp[Z] * basis_(cell, basis, qp, Y);
296  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
297  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
298  tmp[Y] * basis_(cell, basis, qp, X);
299  } // end loop over the bases
300  } // end loop over the quadrature points
301  }
302  else if (numGradDims_ == 3)
303  {
304  for (int qp(0); qp < numQP; ++qp)
305  {
306  tmp[X] = multiplier_ * vector_(cell, qp, X);
307  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
308  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
309  for (int basis(0); basis < numBases; ++basis)
310  {
311  fields_[X](cell, basis) += tmp[Y] * basis_(cell, basis, qp, Z) -
312  tmp[Z] * basis_(cell, basis, qp, Y);
313  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X) -
314  tmp[X] * basis_(cell, basis, qp, Z);
315  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
316  tmp[Y] * basis_(cell, basis, qp, X);
317  } // end loop over the bases
318  } // end loop over the quadrature points
319  } // end if (numGradDims_ == something)
320  }
321  else if (NUM_FIELD_MULT == 1)
322  {
323  if (numGradDims_ == 1)
324  {
325  for (int qp(0); qp < numQP; ++qp)
326  {
327  tmp[Y] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
328  vector_(cell, qp, Y);
329  tmp[Z] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
330  vector_(cell, qp, Z);
331  for (int basis(0); basis < numBases; ++basis)
332  {
333  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
334  fields_[Z](cell, basis) += -tmp[Y] * basis_(cell, basis, qp, X);
335  } // end loop over the bases
336  } // end loop over the quadrature points
337  }
338  else if (numGradDims_ == 2)
339  {
340  for (int qp(0); qp < numQP; ++qp)
341  {
342  tmp[X] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
343  vector_(cell, qp, X);
344  tmp[Y] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
345  vector_(cell, qp, Y);
346  tmp[Z] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
347  vector_(cell, qp, Z);
348  for (int basis(0); basis < numBases; ++basis)
349  {
350  fields_[X](cell, basis) += -tmp[Z] * basis_(cell, basis, qp, Y);
351  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
352  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
353  tmp[Y] * basis_(cell, basis, qp, X);
354  } // end loop over the bases
355  } // end loop over the quadrature points
356  }
357  else if (numGradDims_ == 3)
358  {
359  for (int qp(0); qp < numQP; ++qp)
360  {
361  tmp[X] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
362  vector_(cell, qp, X);
363  tmp[Y] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
364  vector_(cell, qp, Y);
365  tmp[Z] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
366  vector_(cell, qp, Z);
367  for (int basis(0); basis < numBases; ++basis)
368  {
369  fields_[X](cell, basis) += tmp[Y] * basis_(cell, basis, qp, Z) -
370  tmp[Z] * basis_(cell, basis, qp, Y);
371  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X) -
372  tmp[X] * basis_(cell, basis, qp, Z);
373  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
374  tmp[Y] * basis_(cell, basis, qp, X);
375  } // end loop over the bases
376  } // end loop over the quadrature points
377  } // end if (numGradDims_ == something)
378  }
379  else
380  {
381  const int numFieldMults(kokkosFieldMults_.extent(0));
382  if (numGradDims_ == 1)
383  {
384  for (int qp(0); qp < numQP; ++qp)
385  {
386  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
387  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
388  for (int fm(0); fm < numFieldMults; ++fm)
389  {
390  tmp[Y] *= kokkosFieldMults_(fm)(cell, qp);
391  tmp[Z] *= kokkosFieldMults_(fm)(cell, qp);
392  } // end loop over the field multipliers
393  for (int basis(0); basis < numBases; ++basis)
394  {
395  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
396  fields_[Z](cell, basis) += -tmp[Y] * basis_(cell, basis, qp, X);
397  } // end loop over the bases
398  } // end loop over the quadrature points
399  }
400  else if (numGradDims_ == 2)
401  {
402  for (int qp(0); qp < numQP; ++qp)
403  {
404  tmp[X] = multiplier_ * vector_(cell, qp, X);
405  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
406  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
407  for (int fm(0); fm < numFieldMults; ++fm)
408  {
409  tmp[X] *= kokkosFieldMults_(fm)(cell, qp);
410  tmp[Y] *= kokkosFieldMults_(fm)(cell, qp);
411  tmp[Z] *= kokkosFieldMults_(fm)(cell, qp);
412  } // end loop over the field multipliers
413  for (int basis(0); basis < numBases; ++basis)
414  {
415  fields_[X](cell, basis) += -tmp[Z] * basis_(cell, basis, qp, Y);
416  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
417  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
418  tmp[Y] * basis_(cell, basis, qp, X);
419  } // end loop over the bases
420  } // end loop over the quadrature points
421  }
422  else if (numGradDims_ == 3)
423  {
424  for (int qp(0); qp < numQP; ++qp)
425  {
426  tmp[X] = multiplier_ * vector_(cell, qp, X);
427  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
428  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
429  for (int fm(0); fm < numFieldMults; ++fm)
430  {
431  tmp[X] *= kokkosFieldMults_(fm)(cell, qp);
432  tmp[Y] *= kokkosFieldMults_(fm)(cell, qp);
433  tmp[Z] *= kokkosFieldMults_(fm)(cell, qp);
434  } // end loop over the field multipliers
435  for (int basis(0); basis < numBases; ++basis)
436  {
437  fields_[X](cell, basis) += tmp[Y] * basis_(cell, basis, qp, Z) -
438  tmp[Z] * basis_(cell, basis, qp, Y);
439  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X) -
440  tmp[X] * basis_(cell, basis, qp, Z);
441  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
442  tmp[Y] * basis_(cell, basis, qp, X);
443  } // end loop over the bases
444  } // end loop over the quadrature points
445  } // end if (numGradDims_ == something)
446  } // end if (NUM_FIELD_MULT == something)
447  } // end of operator()()
448 
450  //
451  // evaluateFields()
452  //
454  template<typename EvalT, typename Traits>
455  void
458  typename Traits::EvalData workset)
459  {
460  using Kokkos::parallel_for;
461  using Kokkos::RangePolicy;
462 
463  // Grab the basis information.
464  basis_ = this->wda(workset).bases[basisIndex_]->weighted_grad_basis;
465 
466  // The following if-block is for the sake of optimization depending on the
467  // number of field multipliers. The parallel_fors will loop over the cells
468  // in the Workset and execute operator()() above.
469  if (fieldMults_.size() == 0)
470  parallel_for(RangePolicy<FieldMultTag<0>>(0, workset.num_cells), *this);
471  else if (fieldMults_.size() == 1)
472  parallel_for(RangePolicy<FieldMultTag<1>>(0, workset.num_cells), *this);
473  else
474  parallel_for(RangePolicy<FieldMultTag<-1>>(0, workset.num_cells), *this);
475  } // end of evaluateFields()
476 
478  //
479  // getValidParameters()
480  //
482  template<typename EvalT, typename TRAITS>
486  {
487  using panzer::BasisIRLayout;
489  using PHX::DataLayout;
490  using std::string;
491  using std::vector;
493  using Teuchos::RCP;
494  using Teuchos::rcp;
495 
496  // Create a ParameterList with all the valid keys we support.
497  RCP<ParameterList> p = rcp(new ParameterList);
498 
499  RCP<const vector<string>> resNames;
500  p->set("Residual Names", resNames);
501  p->set<string>("Vector Name", "?");
502  RCP<BasisIRLayout> basis;
503  p->set("Basis", basis);
505  p->set("IR", ir);
506  p->set<double>("Multiplier", 1.0);
508  p->set("Field Multipliers", fms);
509  RCP<DataLayout> vecDL;
510  p->set("Data Layout Vector", vecDL);
511 
512  return p;
513  } // end of getValidParameters()
514 
515 } // end of namespace panzer
516 
517 #endif // PANZER_EVALUATOR_GRADBASISCROSSVECTOR_IMPL_HPP
Kokkos::DynRankView< typename InputArray::value_type, PHX::Device > createDynRankView(const InputArray &a, const std::string &name, const DimensionPack...dims)
Wrapper to simplify Panzer use of Sacado ViewFactory.
int num_cells
DEPRECATED - use: numCells()
std::vector< PHX::MDField< const ScalarT, Cell, IP > > fieldMults_
The (possibly empty) list of fields that are multipliers out in front of the integral ( ...
Integrator_GradBasisCrossVector(const panzer::EvaluatorStyle &evalStyle, const std::vector< std::string > &resNames, const std::string &vecName, const panzer::BasisIRLayout &basis, const panzer::IntegrationRule &ir, const double &multiplier=1, const std::vector< std::string > &fmNames=std::vector< std::string >(), const Teuchos::RCP< PHX::DataLayout > &vecDL=Teuchos::null)
Main Constructor.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
This empty struct allows us to optimize operator()() depending on the number of field multipliers...
EvaluatorStyle
An indication of how an Evaluator will behave.
const panzer::EvaluatorStyle evalStyle_
An enum determining the behavior of this Evaluator.
void evaluateFields(typename Traits::EvalData d)
Evaluate Fields.
Teuchos::RCP< Teuchos::ParameterList > getValidParameters() const
Get Valid Parameters.
Teuchos::RCP< const PureBasis > getBasis() const
PHX::View< PHX::UnmanagedView< const ScalarT ** > * > kokkosFieldMults_
The PHX::View representation of the (possibly empty) list of fields that are multipliers out in front...
std::vector< PHX::MDField< ScalarT, Cell, BASIS > > fields_host_
The fields to which we&#39;ll contribute, or in which we&#39;ll store, the result of computing this integral...
PHX::MDField< const ScalarT, Cell, IP, Dim > vector_
A field representing the vector-valued function we&#39;re integrating ( ).
double multiplier
The scalar multiplier out in front of the integral ( ).
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Teuchos::RCP< PHX::DataLayout > dl_scalar
Data layout for scalar fields.
panzer::EvaluatorStyle evalStyle
The EvaluatorStyle of the parent Integrator_CurlBasisDotVector object.
std::vector< std::string >::size_type getBasisIndex(std::string basis_name, const panzer::Workset &workset, WorksetDetailsAccessor &wda)
Returns the index in the workset bases for a particular BasisIRLayout name.
void validateParameters(ParameterList const &validParamList, int const depth=1000, EValidateUsed const validateUsed=VALIDATE_USED_ENABLED, EValidateDefaults const validateDefaults=VALIDATE_DEFAULTS_ENABLED) const
Teuchos::RCP< PHX::DataLayout > dl_vector
Data layout for vector fields.
KOKKOS_INLINE_FUNCTION void operator()(const FieldMultTag< NUM_FIELD_MULT > &tag, const std::size_t &cell) const
Perform the integration.
PHX::MDField< ScalarT, panzer::Cell, panzer::BASIS > field
A field to which we&#39;ll contribute, or in which we&#39;ll store, the result of computing this integral...
void postRegistrationSetup(typename Traits::SetupData d, PHX::FieldManager< Traits > &fm)
Post-Registration Setup.
const std::vector< std::pair< int, LocalOrdinal > > &pid_and_lid const
int numDims_
The number of dimensions associated with the vector.
int numGradDims_
The number of dimensions associated with the gradient.
Teuchos::RCP< PHX::DataLayout > functional
&lt;Cell,Basis&gt;
Teuchos::RCP< const std::vector< panzer::Workset > > worksets_
bool is_null() const