Panzer  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Panzer_Integrator_GradBasisCrossVector_impl.hpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Panzer: A partial differential equation assembly
4 // engine for strongly coupled complex multiphysics systems
5 //
6 // Copyright 2011 NTESS and the Panzer contributors.
7 // SPDX-License-Identifier: BSD-3-Clause
8 // *****************************************************************************
9 // @HEADER
10 
11 #ifndef PANZER_EVALUATOR_GRADBASISCROSSVECTOR_IMPL_HPP
12 #define PANZER_EVALUATOR_GRADBASISCROSSVECTOR_IMPL_HPP
13 
15 //
16 // Include Files
17 //
19 
20 // Intrepid2
21 #include "Intrepid2_FunctionSpaceTools.hpp"
22 
23 // Kokkos
24 #include "Kokkos_ViewFactory.hpp"
25 
26 // Panzer
27 #include "Panzer_BasisIRLayout.hpp"
30 
31 namespace panzer
32 {
34  //
35  // Constructor
36  //
38  template<typename EvalT, typename Traits>
42  const std::vector<std::string>& resNames,
43  const std::string& vecName,
44  const panzer::BasisIRLayout& basis,
45  const panzer::IntegrationRule& ir,
46  const double& multiplier, /* = 1 */
47  const std::vector<std::string>& fmNames, /* =
48  std::vector<std::string>() */
49  const Teuchos::RCP<PHX::DataLayout>& vecDL /* = Teuchos::null */)
50  :
51  evalStyle_(evalStyle),
52  multiplier_(multiplier),
53  numDims_(resNames.size()),
54  numGradDims_(ir.dl_vector->extent(2)),
55  basisName_(basis.name())
56  {
57  using PHX::View;
58  using panzer::BASIS;
59  using panzer::Cell;
61  using panzer::IP;
62  using PHX::DataLayout;
63  using PHX::Device;
64  using PHX::DevLayout;
65  using PHX::MDField;
66  using std::invalid_argument;
67  using std::logic_error;
68  using std::size_t;
69  using std::string;
70  using Teuchos::RCP;
71 
72  // Ensure the input makes sense.
73  TEUCHOS_TEST_FOR_EXCEPTION(numDims_ != 3, invalid_argument, "Error: " \
74  "Integrator_GradBasisCrossVector called with the number of residual " \
75  "names not equal to three.")
76  for (const auto& name : resNames)
77  TEUCHOS_TEST_FOR_EXCEPTION(name == "", invalid_argument, "Error: " \
78  "Integrator_GradBasisCrossVector called with an empty residual name.")
79  TEUCHOS_TEST_FOR_EXCEPTION(vecName == "", invalid_argument, "Error: " \
80  "Integrator_GradBasisCrossVector called with an empty vector name.")
81  RCP<const PureBasis> tmpBasis = basis.getBasis();
82  TEUCHOS_TEST_FOR_EXCEPTION(not tmpBasis->supportsGrad(), logic_error,
83  "Error: Integrator_GradBasisCrossVector: Basis of type \""
84  << tmpBasis->name() << "\" does not support the gradient operator.")
85  RCP<DataLayout> tmpVecDL = ir.dl_vector;
86  if (not vecDL.is_null())
87  {
88  tmpVecDL = vecDL;
90  tmpVecDL->extent(2) < ir.dl_vector->extent(2), logic_error,
91  "Error: Integrator_GradBasisCrossVector: Dimension of space " \
92  "exceeds dimension of Vector Data Layout.")
94  static_cast<int>(vecDL->extent(2)), logic_error, "Error: " \
95  "Integrator_GradBasisCrossVector: The vector must be the same " \
96  "length as the number of residuals.")
97  } // end if (not vecDL.is_null())
99  "Error: Integrator_GradBasisCrossVector: The vector must have at " \
100  "least as many components as there are dimensions in the mesh.")
101 
102  // Create the field for the vector-valued function we're integrating.
103  vector_ = MDField<const ScalarT, Cell, IP, Dim>(vecName, tmpVecDL);
104  this->addDependentField(vector_);
105 
106  // Create the fields that we're either contributing to or evaluating
107  // (storing).
108  fields_host_.resize(resNames.size());
109  fields_ = OuterView("Integrator_GradBasisCrossVector::fields_", resNames.size());
110  {
111  int i=0;
112  for (const auto& name : resNames)
113  fields_host_[i++] = MDField<ScalarT, Cell, BASIS>(name, basis.functional);
114  } // end loop over resNames
115 
116  for (std::size_t i=0; i< fields_.extent(0); ++i) {
117  const auto& field = fields_host_[i];
119  this->addContributedField(field);
120  else // if (evalStyle_ == EvaluatorStyle::EVALUATES)
121  this->addEvaluatedField(field);
122  }
123 
124  // Add the dependent field multipliers, if there are any.
125  int i = 0;
126  fieldMults_.resize(fmNames.size());
127  kokkosFieldMults_ = PHX::View<PHX::UnmanagedView<const ScalarT**>*>("GradBasisCrossVector::KokkosFieldMultipliers", fmNames.size());
128  for (const auto& name : fmNames)
129  {
130  fieldMults_[i++] = MDField<const ScalarT, Cell, IP>(name, ir.dl_scalar);
131  this->addDependentField(fieldMults_[i - 1]);
132  } // end loop over the field multipliers
133 
134  // Set the name of this object.
135  string n("Integrator_GradBasisCrossVector (");
137  n += "CONTRIBUTES";
138  else // if (evalStyle_ == EvaluatorStyle::EVALUATES)
139  n += "EVALUATES";
140  n += "): {";
141  for (size_t j=0; j < fields_host_.size() - 1; ++j)
142  n += resNames[j] + ", ";
143  n += resNames[resNames.size()-1] + "}";
144  this->setName(n);
145  } // end of Constructor
146 
148  //
149  // ParameterList Constructor
150  //
152  template<typename EvalT, typename Traits>
155  const Teuchos::ParameterList& p)
156  :
158  panzer::EvaluatorStyle::EVALUATES,
159  p.get<const std::vector<std::string>>("Residual Names"),
160  p.get<std::string>("Vector Name"),
161  (*p.get<Teuchos::RCP<panzer::BasisIRLayout>>("Basis")),
162  (*p.get<Teuchos::RCP<panzer::IntegrationRule>>("IR")),
163  p.get<double>("Multiplier"),
164  p.isType<Teuchos::RCP<const std::vector<std::string>>>
165  ("Field Multipliers") ?
166  (*p.get<Teuchos::RCP<const std::vector<std::string>>>
167  ("Field Multipliers")) : std::vector<std::string>(),
168  p.isType<Teuchos::RCP<PHX::DataLayout>>("Data Layout Vector") ?
169  p.get<Teuchos::RCP<PHX::DataLayout>>("Data Layout Vector") :
170  Teuchos::null)
171  {
173  using Teuchos::RCP;
174 
175  // Ensure that the input ParameterList didn't contain any bogus entries.
176  RCP<ParameterList> validParams = this->getValidParameters();
177  p.validateParameters(*validParams);
178  } // end of ParameterList Constructor
179 
181  //
182  // postRegistrationSetup()
183  //
185  template<typename EvalT, typename Traits>
186  void
189  typename Traits::SetupData sd,
190  PHX::FieldManager<Traits>& /* fm */)
191  {
193  using panzer::getBasisIndex;
194 
195  // Get the PHX::Views of the fields.
196  auto fields_host_mirror_ = Kokkos::create_mirror_view(fields_);
197  for (size_t i=0; i < fields_host_.size(); ++i) {
198  fields_host_mirror_(i) = fields_host_[i].get_static_view();
199  }
200  Kokkos::deep_copy(fields_,fields_host_mirror_);
201 
202  // Get the PHX::Views of the field multipliers.
203  auto field_mults_host_mirror_ = Kokkos::create_mirror_view(kokkosFieldMults_);
204  for (size_t i=0; i < fieldMults_.size(); ++i)
205  field_mults_host_mirror_(i) = fieldMults_[i].get_static_view();
206  Kokkos::deep_copy(kokkosFieldMults_,field_mults_host_mirror_);
207 
208  // Determine the index in the Workset bases for our particular basis name.
209  basisIndex_ = getBasisIndex(basisName_, (*sd.worksets_)[0], this->wda);
210  } // end of postRegistrationSetup()
211 
213  //
214  // operator()()
215  //
217  template<typename EvalT, typename Traits>
218  template<int NUM_FIELD_MULT>
219  KOKKOS_INLINE_FUNCTION
220  void
223  const FieldMultTag<NUM_FIELD_MULT>& /* tag */,
224  const size_t& cell) const
225  {
227 
228  // Initialize the evaluated fields.
229  const int numBases(fields_[0].extent(1)), numQP(vector_.extent(1));
230  if (evalStyle_ == EvaluatorStyle::EVALUATES)
231  for (int dim(0); dim < numDims_; ++dim)
232  for (int basis(0); basis < numBases; ++basis)
233  fields_[dim](cell, basis) = 0.0;
234 
235  // The following if-block is for the sake of optimization depending on the
236  // number of field multipliers.
237  ScalarT tmp[3];
238  const int X(0), Y(1), Z(2);
239  if (NUM_FIELD_MULT == 0)
240  {
241  if (numGradDims_ == 1)
242  {
243  for (int qp(0); qp < numQP; ++qp)
244  {
245  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
246  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
247  for (int basis(0); basis < numBases; ++basis)
248  {
249  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
250  fields_[Z](cell, basis) += -tmp[Y] * basis_(cell, basis, qp, X);
251  } // end loop over the bases
252  } // end loop over the quadrature points
253  }
254  else if (numGradDims_ == 2)
255  {
256  for (int qp(0); qp < numQP; ++qp)
257  {
258  tmp[X] = multiplier_ * vector_(cell, qp, X);
259  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
260  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
261  for (int basis(0); basis < numBases; ++basis)
262  {
263  fields_[X](cell, basis) += -tmp[Z] * basis_(cell, basis, qp, Y);
264  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
265  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
266  tmp[Y] * basis_(cell, basis, qp, X);
267  } // end loop over the bases
268  } // end loop over the quadrature points
269  }
270  else if (numGradDims_ == 3)
271  {
272  for (int qp(0); qp < numQP; ++qp)
273  {
274  tmp[X] = multiplier_ * vector_(cell, qp, X);
275  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
276  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
277  for (int basis(0); basis < numBases; ++basis)
278  {
279  fields_[X](cell, basis) += tmp[Y] * basis_(cell, basis, qp, Z) -
280  tmp[Z] * basis_(cell, basis, qp, Y);
281  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X) -
282  tmp[X] * basis_(cell, basis, qp, Z);
283  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
284  tmp[Y] * basis_(cell, basis, qp, X);
285  } // end loop over the bases
286  } // end loop over the quadrature points
287  } // end if (numGradDims_ == something)
288  }
289  else if (NUM_FIELD_MULT == 1)
290  {
291  if (numGradDims_ == 1)
292  {
293  for (int qp(0); qp < numQP; ++qp)
294  {
295  tmp[Y] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
296  vector_(cell, qp, Y);
297  tmp[Z] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
298  vector_(cell, qp, Z);
299  for (int basis(0); basis < numBases; ++basis)
300  {
301  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
302  fields_[Z](cell, basis) += -tmp[Y] * basis_(cell, basis, qp, X);
303  } // end loop over the bases
304  } // end loop over the quadrature points
305  }
306  else if (numGradDims_ == 2)
307  {
308  for (int qp(0); qp < numQP; ++qp)
309  {
310  tmp[X] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
311  vector_(cell, qp, X);
312  tmp[Y] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
313  vector_(cell, qp, Y);
314  tmp[Z] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
315  vector_(cell, qp, Z);
316  for (int basis(0); basis < numBases; ++basis)
317  {
318  fields_[X](cell, basis) += -tmp[Z] * basis_(cell, basis, qp, Y);
319  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
320  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
321  tmp[Y] * basis_(cell, basis, qp, X);
322  } // end loop over the bases
323  } // end loop over the quadrature points
324  }
325  else if (numGradDims_ == 3)
326  {
327  for (int qp(0); qp < numQP; ++qp)
328  {
329  tmp[X] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
330  vector_(cell, qp, X);
331  tmp[Y] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
332  vector_(cell, qp, Y);
333  tmp[Z] = multiplier_ * kokkosFieldMults_(0)(cell, qp) *
334  vector_(cell, qp, Z);
335  for (int basis(0); basis < numBases; ++basis)
336  {
337  fields_[X](cell, basis) += tmp[Y] * basis_(cell, basis, qp, Z) -
338  tmp[Z] * basis_(cell, basis, qp, Y);
339  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X) -
340  tmp[X] * basis_(cell, basis, qp, Z);
341  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
342  tmp[Y] * basis_(cell, basis, qp, X);
343  } // end loop over the bases
344  } // end loop over the quadrature points
345  } // end if (numGradDims_ == something)
346  }
347  else
348  {
349  const int numFieldMults(kokkosFieldMults_.extent(0));
350  if (numGradDims_ == 1)
351  {
352  for (int qp(0); qp < numQP; ++qp)
353  {
354  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
355  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
356  for (int fm(0); fm < numFieldMults; ++fm)
357  {
358  tmp[Y] *= kokkosFieldMults_(fm)(cell, qp);
359  tmp[Z] *= kokkosFieldMults_(fm)(cell, qp);
360  } // end loop over the field multipliers
361  for (int basis(0); basis < numBases; ++basis)
362  {
363  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
364  fields_[Z](cell, basis) += -tmp[Y] * basis_(cell, basis, qp, X);
365  } // end loop over the bases
366  } // end loop over the quadrature points
367  }
368  else if (numGradDims_ == 2)
369  {
370  for (int qp(0); qp < numQP; ++qp)
371  {
372  tmp[X] = multiplier_ * vector_(cell, qp, X);
373  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
374  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
375  for (int fm(0); fm < numFieldMults; ++fm)
376  {
377  tmp[X] *= kokkosFieldMults_(fm)(cell, qp);
378  tmp[Y] *= kokkosFieldMults_(fm)(cell, qp);
379  tmp[Z] *= kokkosFieldMults_(fm)(cell, qp);
380  } // end loop over the field multipliers
381  for (int basis(0); basis < numBases; ++basis)
382  {
383  fields_[X](cell, basis) += -tmp[Z] * basis_(cell, basis, qp, Y);
384  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X);
385  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
386  tmp[Y] * basis_(cell, basis, qp, X);
387  } // end loop over the bases
388  } // end loop over the quadrature points
389  }
390  else if (numGradDims_ == 3)
391  {
392  for (int qp(0); qp < numQP; ++qp)
393  {
394  tmp[X] = multiplier_ * vector_(cell, qp, X);
395  tmp[Y] = multiplier_ * vector_(cell, qp, Y);
396  tmp[Z] = multiplier_ * vector_(cell, qp, Z);
397  for (int fm(0); fm < numFieldMults; ++fm)
398  {
399  tmp[X] *= kokkosFieldMults_(fm)(cell, qp);
400  tmp[Y] *= kokkosFieldMults_(fm)(cell, qp);
401  tmp[Z] *= kokkosFieldMults_(fm)(cell, qp);
402  } // end loop over the field multipliers
403  for (int basis(0); basis < numBases; ++basis)
404  {
405  fields_[X](cell, basis) += tmp[Y] * basis_(cell, basis, qp, Z) -
406  tmp[Z] * basis_(cell, basis, qp, Y);
407  fields_[Y](cell, basis) += tmp[Z] * basis_(cell, basis, qp, X) -
408  tmp[X] * basis_(cell, basis, qp, Z);
409  fields_[Z](cell, basis) += tmp[X] * basis_(cell, basis, qp, Y) -
410  tmp[Y] * basis_(cell, basis, qp, X);
411  } // end loop over the bases
412  } // end loop over the quadrature points
413  } // end if (numGradDims_ == something)
414  } // end if (NUM_FIELD_MULT == something)
415  } // end of operator()()
416 
418  //
419  // evaluateFields()
420  //
422  template<typename EvalT, typename Traits>
423  void
426  typename Traits::EvalData workset)
427  {
428  using Kokkos::parallel_for;
429  using Kokkos::RangePolicy;
430 
431  // Grab the basis information.
432  basis_ = this->wda(workset).bases[basisIndex_]->weighted_grad_basis;
433 
434  // The following if-block is for the sake of optimization depending on the
435  // number of field multipliers. The parallel_fors will loop over the cells
436  // in the Workset and execute operator()() above.
437  if (fieldMults_.size() == 0)
438  parallel_for(RangePolicy<FieldMultTag<0>>(0, workset.num_cells), *this);
439  else if (fieldMults_.size() == 1)
440  parallel_for(RangePolicy<FieldMultTag<1>>(0, workset.num_cells), *this);
441  else
442  parallel_for(RangePolicy<FieldMultTag<-1>>(0, workset.num_cells), *this);
443  } // end of evaluateFields()
444 
446  //
447  // getValidParameters()
448  //
450  template<typename EvalT, typename TRAITS>
454  {
455  using panzer::BasisIRLayout;
457  using PHX::DataLayout;
458  using std::string;
459  using std::vector;
461  using Teuchos::RCP;
462  using Teuchos::rcp;
463 
464  // Create a ParameterList with all the valid keys we support.
465  RCP<ParameterList> p = rcp(new ParameterList);
466 
467  RCP<const vector<string>> resNames;
468  p->set("Residual Names", resNames);
469  p->set<string>("Vector Name", "?");
470  RCP<BasisIRLayout> basis;
471  p->set("Basis", basis);
473  p->set("IR", ir);
474  p->set<double>("Multiplier", 1.0);
476  p->set("Field Multipliers", fms);
477  RCP<DataLayout> vecDL;
478  p->set("Data Layout Vector", vecDL);
479 
480  return p;
481  } // end of getValidParameters()
482 
483 } // end of namespace panzer
484 
485 #endif // PANZER_EVALUATOR_GRADBASISCROSSVECTOR_IMPL_HPP
Kokkos::DynRankView< typename InputArray::value_type, PHX::Device > createDynRankView(const InputArray &a, const std::string &name, const DimensionPack...dims)
Wrapper to simplify Panzer use of Sacado ViewFactory.
int num_cells
DEPRECATED - use: numCells()
std::vector< PHX::MDField< const ScalarT, Cell, IP > > fieldMults_
The (possibly empty) list of fields that are multipliers out in front of the integral ( ...
Integrator_GradBasisCrossVector(const panzer::EvaluatorStyle &evalStyle, const std::vector< std::string > &resNames, const std::string &vecName, const panzer::BasisIRLayout &basis, const panzer::IntegrationRule &ir, const double &multiplier=1, const std::vector< std::string > &fmNames=std::vector< std::string >(), const Teuchos::RCP< PHX::DataLayout > &vecDL=Teuchos::null)
Main Constructor.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
This empty struct allows us to optimize operator()() depending on the number of field multipliers...
EvaluatorStyle
An indication of how an Evaluator will behave.
const panzer::EvaluatorStyle evalStyle_
An enum determining the behavior of this Evaluator.
void evaluateFields(typename Traits::EvalData d)
Evaluate Fields.
Teuchos::RCP< Teuchos::ParameterList > getValidParameters() const
Get Valid Parameters.
Teuchos::RCP< const PureBasis > getBasis() const
PHX::View< PHX::UnmanagedView< const ScalarT ** > * > kokkosFieldMults_
The PHX::View representation of the (possibly empty) list of fields that are multipliers out in front...
std::vector< PHX::MDField< ScalarT, Cell, BASIS > > fields_host_
The fields to which we&#39;ll contribute, or in which we&#39;ll store, the result of computing this integral...
PHX::MDField< const ScalarT, Cell, IP, Dim > vector_
A field representing the vector-valued function we&#39;re integrating ( ).
double multiplier
The scalar multiplier out in front of the integral ( ).
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Teuchos::RCP< PHX::DataLayout > dl_scalar
Data layout for scalar fields.
panzer::EvaluatorStyle evalStyle
The EvaluatorStyle of the parent Integrator_CurlBasisDotVector object.
std::vector< std::string >::size_type getBasisIndex(std::string basis_name, const panzer::Workset &workset, WorksetDetailsAccessor &wda)
Returns the index in the workset bases for a particular BasisIRLayout name.
void validateParameters(ParameterList const &validParamList, int const depth=1000, EValidateUsed const validateUsed=VALIDATE_USED_ENABLED, EValidateDefaults const validateDefaults=VALIDATE_DEFAULTS_ENABLED) const
Teuchos::RCP< PHX::DataLayout > dl_vector
Data layout for vector fields.
KOKKOS_INLINE_FUNCTION void operator()(const FieldMultTag< NUM_FIELD_MULT > &tag, const std::size_t &cell) const
Perform the integration.
PHX::MDField< ScalarT, panzer::Cell, panzer::BASIS > field
A field to which we&#39;ll contribute, or in which we&#39;ll store, the result of computing this integral...
void postRegistrationSetup(typename Traits::SetupData d, PHX::FieldManager< Traits > &fm)
Post-Registration Setup.
const std::vector< std::pair< int, LocalOrdinal > > &pid_and_lid const
int numDims_
The number of dimensions associated with the vector.
int numGradDims_
The number of dimensions associated with the gradient.
Teuchos::RCP< PHX::DataLayout > functional
&lt;Cell,Basis&gt;
Teuchos::RCP< const std::vector< panzer::Workset > > worksets_
bool is_null() const