MueLu  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MueLu_LocalLexicographicIndexManager_def.hpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // MueLu: A package for multigrid based preconditioning
4 //
5 // Copyright 2012 NTESS and the MueLu contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
10 #ifndef MUELU_LOCALLEXICOGRAPHICINDEXMANAGER_DEF_HPP_
11 #define MUELU_LOCALLEXICOGRAPHICINDEXMANAGER_DEF_HPP_
12 
14 #include <Xpetra_MapFactory.hpp>
15 
16 namespace MueLu {
17 
18 template <class LocalOrdinal, class GlobalOrdinal, class Node>
20  LocalLexicographicIndexManager(const RCP<const Teuchos::Comm<int> > comm, const bool coupled,
21  const int NumDimensions, const int interpolationOrder,
22  const int MyRank, const int NumRanks,
23  const Array<GO> GFineNodesPerDir, const Array<LO> LFineNodesPerDir,
24  const Array<LO> CoarseRate, const Array<GO> MeshData)
25  : IndexManager(comm, coupled, false, NumDimensions, interpolationOrder, GFineNodesPerDir, LFineNodesPerDir)
26  , myRank(MyRank)
27  , numRanks(NumRanks) {
28  // Allocate data based on user input
29  meshData.resize(numRanks);
31  coarseMeshData.resize(numRanks);
32 
33  // Load coarse rate, being careful about formating
34  for (int dim = 0; dim < 3; ++dim) {
35  if (dim < this->numDimensions) {
36  if (CoarseRate.size() == 1) {
37  this->coarseRate[dim] = CoarseRate[0];
38  } else if (CoarseRate.size() == this->numDimensions) {
39  this->coarseRate[dim] = CoarseRate[dim];
40  }
41  } else {
42  this->coarseRate[dim] = 1;
43  }
44  }
45 
46  // Load meshData for local lexicographic case
47  for (int rank = 0; rank < numRanks; ++rank) {
48  meshData[rank].resize(10);
49  for (int entry = 0; entry < 10; ++entry) {
50  meshData[rank][entry] = MeshData[10 * rank + entry];
51  }
52  }
53 
54  if (this->coupled_) {
55  myBlock = meshData[myRank][2];
57  }
58 
59  // Start simple parameter calculation
61  for (int dim = 0; dim < 3; ++dim) {
62  this->startIndices[dim] = meshData[myRankIndex][2 * dim + 3];
63  this->startIndices[dim + 3] = meshData[myRankIndex][2 * dim + 4];
64  }
65 
66  this->computeMeshParameters();
69 } // Constructor
70 
71 template <class LocalOrdinal, class GlobalOrdinal, class Node>
74  this->gNumCoarseNodes10 = this->gCoarseNodesPerDir[0] * this->gCoarseNodesPerDir[1];
75  this->gNumCoarseNodes = this->gNumCoarseNodes10 * this->gCoarseNodesPerDir[2];
76 }
77 
78 template <class LocalOrdinal, class GlobalOrdinal, class Node>
81  Array<LO>& ghostedNodeCoarseLIDs,
82  Array<int>& ghostedNodeCoarsePIDs,
83  Array<GO>& ghostedNodeCoarseGIDs) const {
84  // First we allocated memory for the outputs
85  ghostedNodeCoarseLIDs.resize(this->getNumLocalGhostedNodes());
86  ghostedNodeCoarsePIDs.resize(this->getNumLocalGhostedNodes());
87  ghostedNodeCoarseGIDs.resize(this->numGhostedNodes);
88 
89  // Now the tricky part starts, the coarse nodes / ghosted coarse nodes need to be imported.
90  // This requires finding what their GID on the fine mesh is. They need to be ordered
91  // lexicographically to allow for fast sweeps through the mesh.
92 
93  // We loop over all ghosted coarse nodes by increasing global lexicographic order
94  Array<LO> ghostedCoarseNodeCoarseIndices(3), ghostedCoarseNodeFineIndices(3);
95  Array<LO> lCoarseNodeCoarseIndices(3);
96  Array<GO> lCoarseNodeCoarseGIDs(this->lNumCoarseNodes);
97  LO currentIndex = -1, countCoarseNodes = 0;
98  for (int k = 0; k < this->ghostedNodesPerDir[2]; ++k) {
99  for (int j = 0; j < this->ghostedNodesPerDir[1]; ++j) {
100  for (int i = 0; i < this->ghostedNodesPerDir[0]; ++i) {
101  currentIndex = k * this->numGhostedNodes10 + j * this->ghostedNodesPerDir[0] + i;
102  ghostedCoarseNodeCoarseIndices[0] = this->startGhostedCoarseNode[0] + i;
103  ghostedCoarseNodeFineIndices[0] = ghostedCoarseNodeCoarseIndices[0] * this->coarseRate[0];
104  if (ghostedCoarseNodeFineIndices[0] > this->gFineNodesPerDir[0] - 1) {
105  ghostedCoarseNodeFineIndices[0] = this->gFineNodesPerDir[0] - 1;
106  }
107  ghostedCoarseNodeCoarseIndices[1] = this->startGhostedCoarseNode[1] + j;
108  ghostedCoarseNodeFineIndices[1] = ghostedCoarseNodeCoarseIndices[1] * this->coarseRate[1];
109  if (ghostedCoarseNodeFineIndices[1] > this->gFineNodesPerDir[1] - 1) {
110  ghostedCoarseNodeFineIndices[1] = this->gFineNodesPerDir[1] - 1;
111  }
112  ghostedCoarseNodeCoarseIndices[2] = this->startGhostedCoarseNode[2] + k;
113  ghostedCoarseNodeFineIndices[2] = ghostedCoarseNodeCoarseIndices[2] * this->coarseRate[2];
114  if (ghostedCoarseNodeFineIndices[2] > this->gFineNodesPerDir[2] - 1) {
115  ghostedCoarseNodeFineIndices[2] = this->gFineNodesPerDir[2] - 1;
116  }
117 
118  GO myGID = -1, myCoarseGID = -1;
119  LO myLID = -1, myPID = -1, myCoarseLID = -1;
120  getGIDLocalLexicographic(i, j, k, ghostedCoarseNodeFineIndices, myGID, myPID, myLID);
121 
122  int rankIndex = rankIndices[myPID];
123  for (int dim = 0; dim < 3; ++dim) {
124  if (dim < this->numDimensions) {
125  lCoarseNodeCoarseIndices[dim] = ghostedCoarseNodeCoarseIndices[dim] - coarseMeshData[rankIndex][3 + 2 * dim];
126  }
127  }
128  LO myRankIndexCoarseNodesInDir0 = coarseMeshData[rankIndex][4] - coarseMeshData[rankIndex][3] + 1;
129  LO myRankIndexCoarseNodes10 = (coarseMeshData[rankIndex][6] - coarseMeshData[rankIndex][5] + 1) * myRankIndexCoarseNodesInDir0;
130  myCoarseLID = lCoarseNodeCoarseIndices[2] * myRankIndexCoarseNodes10 + lCoarseNodeCoarseIndices[1] * myRankIndexCoarseNodesInDir0 + lCoarseNodeCoarseIndices[0];
131  myCoarseGID = myCoarseLID + coarseMeshData[rankIndex][9];
132 
133  ghostedNodeCoarseLIDs[currentIndex] = myCoarseLID;
134  ghostedNodeCoarsePIDs[currentIndex] = myPID;
135  ghostedNodeCoarseGIDs[currentIndex] = myCoarseGID;
136 
137  if (myPID == myRank) {
138  lCoarseNodeCoarseGIDs[countCoarseNodes] = myCoarseGID;
139  ++countCoarseNodes;
140  }
141  }
142  }
143  }
144 }
145 
146 template <class LocalOrdinal, class GlobalOrdinal, class Node>
148  getCoarseNodesData(const RCP<const Map> fineCoordinatesMap,
149  Array<GO>& coarseNodeCoarseGIDs,
150  Array<GO>& coarseNodeFineGIDs) const {
151  // Allocate sufficient storage space for outputs
152  coarseNodeCoarseGIDs.resize(this->getNumLocalCoarseNodes());
153  coarseNodeFineGIDs.resize(this->getNumLocalCoarseNodes());
154 
155  // Load all the GIDs on the fine mesh
156  ArrayView<const GO> fineNodeGIDs = fineCoordinatesMap->getLocalElementList();
157 
158  Array<GO> coarseStartIndices(3);
159  for (int dim = 0; dim < 3; ++dim) {
160  coarseStartIndices[dim] = this->coarseMeshData[myRankIndex][2 * dim + 3];
161  }
162 
163  // Extract the fine LIDs of the coarse nodes and store the corresponding GIDs
164  LO fineLID;
165  for (LO coarseLID = 0; coarseLID < this->getNumLocalCoarseNodes(); ++coarseLID) {
166  Array<LO> coarseIndices(3), fineIndices(3), gCoarseIndices(3);
167  this->getCoarseNodeLocalTuple(coarseLID,
168  coarseIndices[0],
169  coarseIndices[1],
170  coarseIndices[2]);
171  getCoarseNodeFineLID(coarseIndices[0], coarseIndices[1], coarseIndices[2], fineLID);
172  coarseNodeFineGIDs[coarseLID] = fineNodeGIDs[fineLID];
173 
174  LO myRankIndexCoarseNodesInDir0 = coarseMeshData[myRankIndex][4] - coarseMeshData[myRankIndex][3] + 1;
175  LO myRankIndexCoarseNodes10 = (coarseMeshData[myRankIndex][6] - coarseMeshData[myRankIndex][5] + 1) * myRankIndexCoarseNodesInDir0;
176  LO myCoarseLID = coarseIndices[2] * myRankIndexCoarseNodes10 + coarseIndices[1] * myRankIndexCoarseNodesInDir0 + coarseIndices[0];
177  GO myCoarseGID = myCoarseLID + coarseMeshData[myRankIndex][9];
178  coarseNodeCoarseGIDs[coarseLID] = myCoarseGID;
179  }
180 }
181 
182 template <class LocalOrdinal, class GlobalOrdinal, class Node>
184  getGIDLocalLexicographic(const LO iGhosted, const LO jGhosted, const LO kGhosted,
185  const Array<LO> coarseNodeFineIndices,
186  GO& myGID, LO& myPID, LO& myLID) const {
187  LO ni = -1, nj = -1, li = -1, lj = -1, lk = -1;
188  LO myRankGuess = myRankIndex;
189  // We try to make a logical guess as to which PID owns the current coarse node
190  if (iGhosted == 0 && this->ghostInterface[0]) {
191  --myRankGuess;
192  } else if ((iGhosted == this->ghostedNodesPerDir[0] - 1) && this->ghostInterface[1]) {
193  ++myRankGuess;
194  }
195  if (jGhosted == 0 && this->ghostInterface[2]) {
196  myRankGuess -= pi;
197  } else if ((jGhosted == this->ghostedNodesPerDir[1] - 1) && this->ghostInterface[3]) {
198  myRankGuess += pi;
199  }
200  if (kGhosted == 0 && this->ghostInterface[4]) {
201  myRankGuess -= pj * pi;
202  } else if ((kGhosted == this->ghostedNodesPerDir[2] - 1) && this->ghostInterface[5]) {
203  myRankGuess += pj * pi;
204  }
205  if (coarseNodeFineIndices[0] >= meshData[myRankGuess][3] && coarseNodeFineIndices[0] <= meshData[myRankGuess][4] && coarseNodeFineIndices[1] >= meshData[myRankGuess][5] && coarseNodeFineIndices[1] <= meshData[myRankGuess][6] && coarseNodeFineIndices[2] >= meshData[myRankGuess][7] && coarseNodeFineIndices[2] <= meshData[myRankGuess][8] && myRankGuess < numRanks - 1) {
206  myPID = meshData[myRankGuess][0];
207  ni = meshData[myRankGuess][4] - meshData[myRankGuess][3] + 1;
208  nj = meshData[myRankGuess][6] - meshData[myRankGuess][5] + 1;
209  li = coarseNodeFineIndices[0] - meshData[myRankGuess][3];
210  lj = coarseNodeFineIndices[1] - meshData[myRankGuess][5];
211  lk = coarseNodeFineIndices[2] - meshData[myRankGuess][7];
212  myLID = lk * nj * ni + lj * ni + li;
213  myGID = meshData[myRankGuess][9] + myLID;
214  } else { // The guess failed, let us use the heavy artilery: std::find_if()
215  // It could be interesting to monitor how many times this branch of the code gets
216  // used as it is far more expensive than the above one...
217  auto nodeRank = std::find_if(myBlockStart, myBlockEnd,
218  [coarseNodeFineIndices](const std::vector<GO>& vec) {
219  if (coarseNodeFineIndices[0] >= vec[3] && coarseNodeFineIndices[0] <= vec[4] && coarseNodeFineIndices[1] >= vec[5] && coarseNodeFineIndices[1] <= vec[6] && coarseNodeFineIndices[2] >= vec[7] && coarseNodeFineIndices[2] <= vec[8]) {
220  return true;
221  } else {
222  return false;
223  }
224  });
225  myPID = (*nodeRank)[0];
226  ni = (*nodeRank)[4] - (*nodeRank)[3] + 1;
227  nj = (*nodeRank)[6] - (*nodeRank)[5] + 1;
228  li = coarseNodeFineIndices[0] - (*nodeRank)[3];
229  lj = coarseNodeFineIndices[1] - (*nodeRank)[5];
230  lk = coarseNodeFineIndices[2] - (*nodeRank)[7];
231  myLID = lk * nj * ni + lj * ni + li;
232  myGID = (*nodeRank)[9] + myLID;
233  }
234 }
235 
236 template <class LocalOrdinal, class GlobalOrdinal, class Node>
239  std::sort(meshData.begin(), meshData.end(),
240  [](const std::vector<GO>& a, const std::vector<GO>& b) -> bool {
241  // The below function sorts ranks by blockID, kmin, jmin and imin
242  if (a[2] < b[2]) {
243  return true;
244  } else if (a[2] == b[2]) {
245  if (a[7] < b[7]) {
246  return true;
247  } else if (a[7] == b[7]) {
248  if (a[5] < b[5]) {
249  return true;
250  } else if (a[5] == b[5]) {
251  if (a[3] < b[3]) {
252  return true;
253  }
254  }
255  }
256  }
257  return false;
258  });
259 
260  numBlocks = meshData[numRanks - 1][2] + 1;
261  // Find the range of the current block
262  myBlockStart = std::lower_bound(meshData.begin(), meshData.end(), myBlock - 1,
263  [](const std::vector<GO>& vec, const GO val) -> bool {
264  return (vec[2] < val) ? true : false;
265  });
266  myBlockEnd = std::upper_bound(meshData.begin(), meshData.end(), myBlock,
267  [](const GO val, const std::vector<GO>& vec) -> bool {
268  return (val < vec[2]) ? true : false;
269  });
270  // Assuming that i,j,k and ranges are split in pi, pj and pk processors
271  // we search for these numbers as they will allow us to find quickly the PID of processors
272  // owning ghost nodes.
273  auto myKEnd = std::upper_bound(myBlockStart, myBlockEnd, (*myBlockStart)[3],
274  [](const GO val, const std::vector<GO>& vec) -> bool {
275  return (val < vec[7]) ? true : false;
276  });
277  auto myJEnd = std::upper_bound(myBlockStart, myKEnd, (*myBlockStart)[3],
278  [](const GO val, const std::vector<GO>& vec) -> bool {
279  return (val < vec[5]) ? true : false;
280  });
281  pi = std::distance(myBlockStart, myJEnd);
282  pj = std::distance(myBlockStart, myKEnd) / pi;
283  pk = std::distance(myBlockStart, myBlockEnd) / (pj * pi);
284 
285  // We also look for the index of the local rank in the current block.
286  const int MyRank = myRank;
287  myRankIndex = std::distance(meshData.begin(),
288  std::find_if(myBlockStart, myBlockEnd,
289  [MyRank](const std::vector<GO>& vec) -> bool {
290  return (vec[0] == MyRank) ? true : false;
291  }));
292  // We also construct a mapping of rank to rankIndex in the meshData vector,
293  // this will allow us to access data quickly later on.
294  for (int rankIndex = 0; rankIndex < numRanks; ++rankIndex) {
295  rankIndices[meshData[rankIndex][0]] = rankIndex;
296  }
297 }
298 
299 template <class LocalOrdinal, class GlobalOrdinal, class Node>
302  Array<LO> rankOffset(3);
303  for (int rank = 0; rank < numRanks; ++rank) {
304  coarseMeshData[rank].resize(10);
305  coarseMeshData[rank][0] = meshData[rank][0];
306  coarseMeshData[rank][1] = meshData[rank][1];
307  coarseMeshData[rank][2] = meshData[rank][2];
308  for (int dim = 0; dim < 3; ++dim) {
309  coarseMeshData[rank][3 + 2 * dim] = meshData[rank][3 + 2 * dim] / this->coarseRate[dim];
310  if (meshData[rank][3 + 2 * dim] % this->coarseRate[dim] > 0) {
311  ++coarseMeshData[rank][3 + 2 * dim];
312  }
313  coarseMeshData[rank][3 + 2 * dim + 1] = meshData[rank][3 + 2 * dim + 1] / this->coarseRate[dim];
314  if (meshData[rank][3 + 2 * dim + 1] == this->gFineNodesPerDir[dim] - 1 &&
315  meshData[rank][3 + 2 * dim + 1] % this->coarseRate[dim] > 0) {
316  // this->endRate[dim] < this->coarseRate[dim]) {
317  ++coarseMeshData[rank][3 + 2 * dim + 1];
318  }
319  }
320  if (rank > 0) {
321  coarseMeshData[rank][9] = coarseMeshData[rank - 1][9] + (coarseMeshData[rank - 1][8] - coarseMeshData[rank - 1][7] + 1) * (coarseMeshData[rank - 1][6] - coarseMeshData[rank - 1][5] + 1) * (coarseMeshData[rank - 1][4] - coarseMeshData[rank - 1][3] + 1);
322  }
323  }
324 }
325 
326 template <class LocalOrdinal, class GlobalOrdinal, class Node>
327 std::vector<std::vector<GlobalOrdinal> > LocalLexicographicIndexManager<LocalOrdinal, GlobalOrdinal, Node>::
328  getCoarseMeshData() const { return coarseMeshData; }
329 
330 template <class LocalOrdinal, class GlobalOrdinal, class Node>
332  getFineNodeGlobalTuple(const GO /* myGID */, GO& /* i */, GO& /* j */, GO& /* k */) const {
333 }
334 
335 template <class LocalOrdinal, class GlobalOrdinal, class Node>
337  getFineNodeLocalTuple(const LO myLID, LO& i, LO& j, LO& k) const {
338  LO tmp;
339  k = myLID / this->lNumFineNodes10;
340  tmp = myLID % this->lNumFineNodes10;
341  j = tmp / this->lFineNodesPerDir[0];
342  i = tmp % this->lFineNodesPerDir[0];
343 }
344 
345 template <class LocalOrdinal, class GlobalOrdinal, class Node>
347  getFineNodeGhostedTuple(const LO myLID, LO& i, LO& j, LO& k) const {
348  LO tmp;
349  k = myLID / this->lNumFineNodes10;
350  tmp = myLID % this->lNumFineNodes10;
351  j = tmp / this->lFineNodesPerDir[0];
352  i = tmp % this->lFineNodesPerDir[0];
353 
354  k += this->offsets[2];
355  j += this->offsets[1];
356  i += this->offsets[0];
357 }
358 
359 template <class LocalOrdinal, class GlobalOrdinal, class Node>
361  getFineNodeGID(const GO /* i */, const GO /* j */, const GO /* k */, GO& /* myGID */) const {
362 }
363 
364 template <class LocalOrdinal, class GlobalOrdinal, class Node>
366  getFineNodeLID(const LO /* i */, const LO /* j */, const LO /* k */, LO& /* myLID */) const {
367 }
368 
369 template <class LocalOrdinal, class GlobalOrdinal, class Node>
371  getCoarseNodeGlobalTuple(const GO /* myGID */, GO& /* i */, GO& /* j */, GO& /* k */) const {
372 }
373 
374 template <class LocalOrdinal, class GlobalOrdinal, class Node>
376  getCoarseNodeLocalTuple(const LO myLID, LO& i, LO& j, LO& k) const {
377  LO tmp;
378  k = myLID / this->lNumCoarseNodes10;
379  tmp = myLID % this->lNumCoarseNodes10;
380  j = tmp / this->lCoarseNodesPerDir[0];
381  i = tmp % this->lCoarseNodesPerDir[0];
382 }
383 
384 template <class LocalOrdinal, class GlobalOrdinal, class Node>
386  getCoarseNodeGID(const GO /* i */, const GO /* j */, const GO /* k */, GO& /* myGID */) const {
387 }
388 
389 template <class LocalOrdinal, class GlobalOrdinal, class Node>
391  getCoarseNodeLID(const LO /* i */, const LO /* j */, const LO /* k */, LO& /* myLID */) const {
392 }
393 
394 template <class LocalOrdinal, class GlobalOrdinal, class Node>
396  getCoarseNodeGhostedLID(const LO i, const LO j, const LO k, LO& myLID) const {
397  myLID = k * this->numGhostedNodes10 + j * this->ghostedNodesPerDir[0] + i;
398 }
399 
400 template <class LocalOrdinal, class GlobalOrdinal, class Node>
402  getCoarseNodeFineLID(const LO i, const LO j, const LO k, LO& myLID) const {
403  // Assumptions: (i,j,k) is a tuple on the coarse mesh
404  // myLID is the corresponding local ID on the fine mesh
405  const LO multiplier[3] = {1, this->lFineNodesPerDir[0], this->lNumFineNodes10};
406  const LO indices[3] = {i, j, k};
407 
408  myLID = 0;
409  for (int dim = 0; dim < 3; ++dim) {
410  if ((indices[dim] == this->getLocalCoarseNodesInDir(dim) - 1) && this->meshEdge[2 * dim + 1]) {
411  // We are dealing with the last node on the mesh in direction dim
412  // so we can simply use the number of nodes on the fine mesh in that direction
413  myLID += (this->getLocalFineNodesInDir(dim) - 1) * multiplier[dim];
414  } else {
415  myLID += (indices[dim] * this->getCoarseningRate(dim) + this->getCoarseNodeOffset(dim)) * multiplier[dim];
416  }
417  }
418 }
419 
420 template <class LocalOrdinal, class GlobalOrdinal, class Node>
422  getGhostedNodeFineLID(const LO /* i */, const LO /* j */, const LO /* k */, LO& /* myLID */) const {
423 }
424 
425 template <class LocalOrdinal, class GlobalOrdinal, class Node>
427  getGhostedNodeCoarseLID(const LO /* i */, const LO /* j */, const LO /* k */, LO& /* myLID */) const {
428 }
429 
430 } // namespace MueLu
431 
432 #endif /* MUELU_LOCALLEXICOGRAPHICINDEXMANAGER_DEF_HPP_ */
const bool coupled_
Flag for coupled vs uncoupled aggregation mode, if true aggregation is coupled.
void getCoarseNodeGlobalTuple(const GO myGID, GO &i, GO &j, GO &k) const
void getCoarseNodeLocalTuple(const LO myLID, LO &i, LO &j, LO &k) const
void getGhostedNodesData(const RCP< const Map > fineMap, Array< LO > &ghostedNodeCoarseLIDs, Array< int > &ghostedNodeCoarsePIDs, Array< GO > &ghostedNodeCoarseGIDs) const
void getFineNodeLocalTuple(const LO myLID, LO &i, LO &j, LO &k) const
std::vector< std::vector< GO > > getCoarseMeshData() const
void getFineNodeGhostedTuple(const LO myLID, LO &i, LO &j, LO &k) const
GlobalOrdinal GO
void getGhostedNodeCoarseLID(const LO i, const LO j, const LO k, LO &myLID) const
void getGhostedNodeFineLID(const LO i, const LO j, const LO k, LO &myLID) const
int myRankIndex
local process index for record in meshData after sorting.
void getCoarseNodesData(const RCP< const Map > fineCoordinatesMap, Array< GO > &coarseNodeCoarseGIDs, Array< GO > &coarseNodeFineGIDs) const
Array< GO > startIndices
lowest global tuple (i,j,k) of a node on the local process
void getCoarseNodeFineLID(const LO i, const LO j, const LO k, LO &myLID) const
std::vector< std::vector< GO > > meshData
layout of indices accross all processes.
LocalOrdinal LO
void getCoarseNodeLID(const LO i, const LO j, const LO k, LO &myLID) const
Array< int > coarseRate
coarsening rate in each direction
void getFineNodeGlobalTuple(const GO myGID, GO &i, GO &j, GO &k) const
const int numDimensions
Number of spacial dimensions in the problem.
Array< int > rankIndices
mapping between rank ID and reordered rank ID.
void getFineNodeGID(const GO i, const GO j, const GO k, GO &myGID) const
const int numRanks
Number of ranks used to decompose the problem.
void resize(size_type new_size, const value_type &x=value_type())
void getCoarseNodeGID(const GO i, const GO j, const GO k, GO &myGID) const
void getFineNodeLID(const LO i, const LO j, const LO k, LO &myLID) const
size_type size() const
void getCoarseNodeGhostedLID(const LO i, const LO j, const LO k, LO &myLID) const
void getGIDLocalLexicographic(const LO iGhosted, const LO jGhosted, const LO kGhosted, const Array< LO > coarseNodeFineIndices, GO &myGID, LO &myPID, LO &myLID) const
Container class for mesh layout and indices calculation.
std::vector< std::vector< GO > > coarseMeshData
layout of indices accross all processes after coarsening.