10 #ifndef MUELU_COALESCEDROPFACTORY_KOKKOS_DEF_HPP
11 #define MUELU_COALESCEDROPFACTORY_KOKKOS_DEF_HPP
13 #include <Kokkos_Core.hpp>
14 #include <KokkosSparse_CrsMatrix.hpp>
22 #include "MueLu_AmalgamationInfo.hpp"
25 #include "MueLu_LWGraph_kokkos.hpp"
40 template <
class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
44 #define SET_VALID_ENTRY(name) validParamList->setEntry(name, MasterList::getEntry(name))
65 SET_VALID_ENTRY(
"filtered matrix: spread lumping diag dom growth factor");
69 #undef SET_VALID_ENTRY
70 validParamList->
set<
bool>(
"lightweight wrap",
true,
"Experimental option for lightweight graph access");
73 validParamList->
getEntry(
"aggregation: drop scheme").
setValidator(
rcp(
new Teuchos::StringValidator(Teuchos::tuple<std::string>(
"signed classical sa",
"classical",
"distance laplacian",
"signed classical",
"block diagonal",
"block diagonal classical",
"block diagonal distance laplacian",
"block diagonal signed classical",
"block diagonal colored signed classical"))));
79 validParamList->
set<
RCP<const FactoryBase>>(
"UnAmalgamationInfo", Teuchos::null,
"Generating factory for UnAmalgamationInfo");
84 return validParamList;
87 template <
class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
89 Input(currentLevel,
"A");
90 Input(currentLevel,
"UnAmalgamationInfo");
93 std::string algo = pL.
get<std::string>(
"aggregation: drop scheme");
94 std::string distLaplMetric = pL.
get<std::string>(
"aggregation: distance laplacian metric");
95 if (algo ==
"distance laplacian" || algo ==
"block diagonal distance laplacian") {
96 Input(currentLevel,
"Coordinates");
97 if (distLaplMetric ==
"material")
98 Input(currentLevel,
"Material");
100 if (algo ==
"signed classical sa")
102 else if (algo.find(
"block diagonal") != std::string::npos || algo.find(
"signed classical") != std::string::npos) {
103 Input(currentLevel,
"BlockNumber");
107 template <
class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
110 auto A = Get<RCP<Matrix>>(currentLevel,
"A");
112 LO blkSize = A->GetFixedBlockSize() / A->GetStorageBlockSize();
114 std::tuple<GlobalOrdinal, boundary_nodes_type> results;
116 results = BuildScalar(currentLevel);
118 results = BuildVector(currentLevel);
122 auto boundaryNodes = std::get<1>(results);
124 GO numLocalBoundaryNodes = 0;
125 GO numGlobalBoundaryNodes = 0;
127 Kokkos::parallel_reduce(
128 "MueLu:CoalesceDropF:Build:bnd",
range_type(0, boundaryNodes.extent(0)),
129 KOKKOS_LAMBDA(
const LO i,
GO& n) {
130 if (boundaryNodes(i))
133 numLocalBoundaryNodes);
135 auto comm = A->getRowMap()->getComm();
136 MueLu_sumAll(comm, numLocalBoundaryNodes, numGlobalBoundaryNodes);
138 GO numGlobalTotal = A->getGlobalNumEntries();
142 GetOStream(
Statistics1) <<
"Detected " << numGlobalBoundaryNodes <<
" Dirichlet nodes" << std::endl;
143 if (numGlobalTotal != 0) {
144 GetOStream(
Statistics1) <<
"Number of dropped entries: "
145 << numGlobalDropped <<
"/" << numGlobalTotal
146 <<
" (" << 100 * Teuchos::as<double>(numGlobalDropped) / Teuchos::as<double>(numGlobalTotal) <<
"%)" << std::endl;
151 template <
class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
152 std::tuple<Teuchos::RCP<Xpetra::Vector<LocalOrdinal, LocalOrdinal, GlobalOrdinal, Node>>,
Teuchos::RCP<Xpetra::Vector<LocalOrdinal, LocalOrdinal, GlobalOrdinal, Node>>>
CoalesceDropFactory_kokkos<Scalar, LocalOrdinal, GlobalOrdinal, Node>::
156 GetOStream(
Statistics1) <<
"Using BlockDiagonal Graph before dropping (with provided blocking)" << std::endl;
159 auto A = Get<RCP<Matrix>>(currentLevel,
"A");
161 if (!importer.is_null()) {
164 ghostedBlockNumber->doImport(*BlockNumber, *importer,
Xpetra::INSERT);
166 ghostedBlockNumber = BlockNumber;
168 return std::make_tuple(BlockNumber, ghostedBlockNumber);
171 template <
class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
178 using local_matrix_type =
typename MatrixType::local_matrix_type;
179 using local_graph_type =
typename GraphType::local_graph_type;
180 using rowptr_type =
typename local_graph_type::row_map_type::non_const_type;
181 using entries_type =
typename local_graph_type::entries_type::non_const_type;
182 using values_type =
typename local_matrix_type::values_type::non_const_type;
183 using device_type =
typename Node::device_type;
184 using memory_space =
typename device_type::memory_space;
187 typedef typename STS::magnitudeType MT;
190 auto A = Get<RCP<Matrix>>(currentLevel,
"A");
197 const typename STS::magnitudeType dirichletThreshold = STS::magnitude(as<SC>(pL.get<
double>(
"aggregation: Dirichlet threshold")));
198 const typename STS::magnitudeType rowSumTol = as<typename STS::magnitudeType>(pL.get<
double>(
"aggregation: row sum drop tol"));
202 const std::string algo = pL.get<std::string>(
"aggregation: drop scheme");
203 std::string classicalAlgoStr = pL.get<std::string>(
"aggregation: classical algo");
204 std::string distanceLaplacianAlgoStr = pL.get<std::string>(
"aggregation: distance laplacian algo");
205 std::string distanceLaplacianMetric = pL.get<std::string>(
"aggregation: distance laplacian metric");
208 if (pL.get<
bool>(
"aggregation: use ml scaling of drop tol"))
209 threshold = pL.get<
double>(
"aggregation: drop tol") / pow(2.0, currentLevel.GetLevelID());
211 threshold = as<MT>(pL.get<
double>(
"aggregation: drop tol"));
212 bool aggregationMayCreateDirichlet = pL.get<
bool>(
"aggregation: dropping may create Dirichlet");
215 const bool lumping = pL.get<
bool>(
"filtered matrix: use lumping");
216 const bool reuseGraph = pL.get<
bool>(
"filtered matrix: reuse graph");
217 const bool reuseEigenvalue = pL.get<
bool>(
"filtered matrix: reuse eigenvalue");
219 const bool useRootStencil = pL.get<
bool>(
"filtered matrix: use root stencil");
220 const bool useSpreadLumping = pL.get<
bool>(
"filtered matrix: use spread lumping");
222 const MT filteringDirichletThreshold = as<MT>(pL.get<
double>(
"filtered matrix: Dirichlet threshold"));
226 if (algo ==
"classical")
227 GetOStream(
Runtime0) <<
"algorithm = \"" << algo <<
"\" classical algorithm = \"" << classicalAlgoStr <<
"\": threshold = " << threshold <<
", blocksize = " << A->GetFixedBlockSize() << std::endl;
228 else if (algo ==
"distance laplacian")
229 GetOStream(
Runtime0) <<
"algorithm = \"" << algo <<
"\" distance laplacian algorithm = \"" << distanceLaplacianAlgoStr <<
"\" distance laplacian metric = \"" << distanceLaplacianMetric <<
"\": threshold = " << threshold <<
", blocksize = " << A->GetFixedBlockSize() << std::endl;
231 GetOStream(
Runtime0) <<
"algorithm = \"" << algo <<
"\": threshold = " << threshold <<
", blocksize = " << A->GetFixedBlockSize() << std::endl;
233 if (((algo ==
"classical") && (classicalAlgoStr.find(
"scaled") != std::string::npos)) || ((algo ==
"distance laplacian") && (distanceLaplacianAlgoStr.find(
"scaled") != std::string::npos)))
247 auto crsA = toCrsMatrix(A);
248 auto lclA = crsA->getLocalMatrixDevice();
266 #define MueLu_runBoundaryFunctors(...) \
268 auto boundaries = BoundaryDetection::BoundaryFunctor(lclA, __VA_ARGS__); \
269 Kokkos::parallel_for("CoalesceDrop::BoundaryDetection", range, boundaries); \
274 if (rowSumTol <= 0.) {
281 #undef MueLu_runBoundaryFunctors
313 auto filtered_rowptr = rowptr_type(
"filtered_rowptr", lclA.numRows() + 1);
317 auto results = Kokkos::View<DecisionType*, memory_space>(
"results", lclA.nnz());
321 std::string functorLabel =
"MueLu::CoalesceDrop::CountEntries";
324 #if !defined(HAVE_MUELU_DEBUG)
325 #define MueLu_runDroppingFunctors(...) \
327 auto countingFunctor = MatrixConstruction::PointwiseCountingFunctor(lclA, results, filtered_rowptr, __VA_ARGS__); \
328 Kokkos::parallel_scan(functorLabel, range, countingFunctor, nnz_filtered); \
331 #define MueLu_runDroppingFunctors(...) \
333 auto debug = Misc::DebugFunctor(lclA, results); \
334 auto countingFunctor = MatrixConstruction::PointwiseCountingFunctor(lclA, results, filtered_rowptr, __VA_ARGS__, debug); \
335 Kokkos::parallel_scan(functorLabel, range, countingFunctor, nnz_filtered); \
341 if (threshold != zero) {
345 if (algo ==
"classical" || algo ==
"block diagonal classical") {
346 if (algo ==
"block diagonal classical") {
347 auto BlockNumbers = GetBlockNumberMVs(currentLevel);
350 if (classicalAlgoStr ==
"default") {
353 if (aggregationMayCreateDirichlet) {
358 mark_singletons_as_boundary);
365 }
else if (classicalAlgoStr ==
"unscaled cut") {
373 }
else if (classicalAlgoStr ==
"scaled cut") {
381 }
else if (classicalAlgoStr ==
"scaled cut symmetric") {
398 if (classicalAlgoStr ==
"default") {
401 if (aggregationMayCreateDirichlet) {
405 mark_singletons_as_boundary);
411 }
else if (classicalAlgoStr ==
"unscaled cut") {
418 }
else if (classicalAlgoStr ==
"scaled cut") {
425 }
else if (classicalAlgoStr ==
"scaled cut symmetric") {
441 }
else if (algo ==
"signed classical" || algo ==
"block diagonal signed classical" || algo ==
"block diagonal colored signed classical") {
444 if (algo ==
"block diagonal signed classical" || algo ==
"block diagonal colored signed classical") {
445 auto BlockNumbers = GetBlockNumberMVs(currentLevel);
448 if (classicalAlgoStr ==
"default") {
449 if (aggregationMayCreateDirichlet) {
451 signed_classical_rs_dropping,
454 mark_singletons_as_boundary);
458 signed_classical_rs_dropping,
466 if (classicalAlgoStr ==
"default") {
467 if (aggregationMayCreateDirichlet) {
471 mark_singletons_as_boundary);
482 }
else if (algo ==
"signed classical sa") {
483 if (classicalAlgoStr ==
"default") {
486 if (aggregationMayCreateDirichlet) {
490 mark_singletons_as_boundary);
500 }
else if (algo ==
"distance laplacian" || algo ==
"block diagonal distance laplacian") {
502 auto coords = Get<RCP<doubleMultiVector>>(currentLevel,
"Coordinates");
504 if (algo ==
"block diagonal distance laplacian") {
505 auto BlockNumbers = GetBlockNumberMVs(currentLevel);
510 if (distanceLaplacianAlgoStr ==
"default") {
513 if (aggregationMayCreateDirichlet) {
515 dist_laplacian_dropping,
518 mark_singletons_as_boundary);
521 dist_laplacian_dropping,
525 }
else if (distanceLaplacianAlgoStr ==
"unscaled cut") {
533 }
else if (distanceLaplacianAlgoStr ==
"scaled cut") {
541 }
else if (distanceLaplacianAlgoStr ==
"scaled cut symmetric") {
557 if (distanceLaplacianAlgoStr ==
"default") {
558 if (distanceLaplacianMetric ==
"unweighted") {
562 if (aggregationMayCreateDirichlet) {
566 mark_singletons_as_boundary);
572 }
else if (distanceLaplacianMetric ==
"material") {
573 auto material = Get<RCP<MultiVector>>(currentLevel,
"Material");
574 if (material->getNumVectors() == 1) {
575 GetOStream(
Runtime0) <<
"material scalar mean = " << material->getVector(0)->meanValue() << std::endl;
580 if (aggregationMayCreateDirichlet) {
584 mark_singletons_as_boundary);
594 std::stringstream ss;
595 ss <<
"material tensor mean =" << std::endl;
597 for (
size_t i = 0; i < coords->getNumVectors(); ++i) {
599 for (
size_t j = 0; j < coords->getNumVectors(); ++j) {
600 ss << material->getVector(k)->meanValue() <<
" ";
611 if (aggregationMayCreateDirichlet) {
615 mark_singletons_as_boundary);
624 }
else if (distanceLaplacianAlgoStr ==
"unscaled cut") {
625 if (distanceLaplacianMetric ==
"unweighted") {
633 }
else if (distanceLaplacianMetric ==
"material") {
634 auto material = Get<RCP<MultiVector>>(currentLevel,
"Material");
635 if (material->getNumVectors() == 1) {
636 GetOStream(
Runtime0) <<
"material scalar mean = " << material->getVector(0)->meanValue() << std::endl;
649 std::stringstream ss;
650 ss <<
"material tensor mean =" << std::endl;
652 for (
size_t i = 0; i < coords->getNumVectors(); ++i) {
654 for (
size_t j = 0; j < coords->getNumVectors(); ++j) {
655 ss << material->getVector(k)->meanValue() <<
" ";
672 }
else if (distanceLaplacianAlgoStr ==
"scaled cut") {
673 if (distanceLaplacianMetric ==
"unweighted") {
681 }
else if (distanceLaplacianMetric ==
"material") {
682 auto material = Get<RCP<MultiVector>>(currentLevel,
"Material");
683 if (material->getNumVectors() == 1) {
684 GetOStream(
Runtime0) <<
"material scalar mean = " << material->getVector(0)->meanValue() << std::endl;
697 std::stringstream ss;
698 ss <<
"material tensor mean =" << std::endl;
700 for (
size_t i = 0; i < coords->getNumVectors(); ++i) {
702 for (
size_t j = 0; j < coords->getNumVectors(); ++j) {
703 ss << material->getVector(k)->meanValue() <<
" ";
720 }
else if (distanceLaplacianAlgoStr ==
"scaled cut symmetric") {
721 if (distanceLaplacianMetric ==
"unweighted") {
729 }
else if (distanceLaplacianMetric ==
"material") {
730 auto material = Get<RCP<MultiVector>>(currentLevel,
"Material");
731 if (material->getNumVectors() == 1) {
732 GetOStream(
Runtime0) <<
"material scalar mean = " << material->getVector(0)->meanValue() << std::endl;
745 std::stringstream ss;
746 ss <<
"material tensor mean =" << std::endl;
748 for (
size_t i = 0; i < coords->getNumVectors(); ++i) {
750 for (
size_t j = 0; j < coords->getNumVectors(); ++j) {
751 ss << material->getVector(k)->meanValue() <<
" ";
776 }
else if (algo ==
"block diagonal") {
777 auto BlockNumbers = GetBlockNumberMVs(currentLevel);
785 Kokkos::deep_copy(results,
KEEP);
791 #undef MueLu_runDroppingFunctors
793 GO numDropped = lclA.nnz() - nnz_filtered;
806 local_matrix_type lclFilteredA;
807 local_graph_type lclGraph;
809 filteredA = MatrixFactory::BuildCopy(A);
810 lclFilteredA = filteredA->getLocalMatrixDevice();
812 auto colidx = entries_type(
"entries", nnz_filtered);
813 lclGraph = local_graph_type(colidx, filtered_rowptr);
815 auto colidx = entries_type(
"entries", nnz_filtered);
816 auto values = values_type(
"values", nnz_filtered);
817 lclFilteredA = local_matrix_type(
"filteredA",
818 lclA.numRows(), lclA.numCols(),
820 values, filtered_rowptr, colidx);
826 Kokkos::parallel_for(
"MueLu::CoalesceDrop::Fill_lumped_reuse", range, fillFunctor);
829 Kokkos::parallel_for(
"MueLu::CoalesceDrop::Fill_lumped_noreuse", range, fillFunctor);
834 Kokkos::parallel_for(
"MueLu::CoalesceDrop::Fill_unlumped_reuse", range, fillFunctor);
837 Kokkos::parallel_for(
"MueLu::CoalesceDrop::Fill_unlumped_noreuse", range, fillFunctor);
842 filteredA = MatrixFactory::Build(lclFilteredA, A->getRowMap(), A->getColMap(), A->getDomainMap(), A->getRangeMap());
843 filteredA->SetFixedBlockSize(A->GetFixedBlockSize());
845 if (reuseEigenvalue) {
850 filteredA->SetMaxEigenvalueEstimate(A->GetMaxEigenvalueEstimate());
857 lclGraph = filteredA->getCrsGraph()->getLocalGraphDevice();
859 graph =
rcp(
new LWGraph_kokkos(lclGraph, filteredA->getRowMap(), filteredA->getColMap(),
"amalgamated graph of A"));
864 Set(currentLevel,
"DofsPerNode", dofsPerNode);
865 Set(currentLevel,
"Graph", graph);
866 Set(currentLevel,
"A", filteredA);
868 return std::make_tuple(numDropped, boundaryNodes);
871 template <
class Scalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
878 using local_matrix_type =
typename MatrixType::local_matrix_type;
879 using local_graph_type =
typename GraphType::local_graph_type;
880 using rowptr_type =
typename local_graph_type::row_map_type::non_const_type;
881 using entries_type =
typename local_graph_type::entries_type::non_const_type;
882 using values_type =
typename local_matrix_type::values_type::non_const_type;
883 using device_type =
typename Node::device_type;
884 using memory_space =
typename device_type::memory_space;
887 typedef typename STS::magnitudeType MT;
890 auto A = Get<RCP<Matrix>>(currentLevel,
"A");
910 LO blkSize = A->GetFixedBlockSize() / A->GetStorageBlockSize();
912 auto amalInfo = Get<RCP<AmalgamationInfo>>(currentLevel,
"UnAmalgamationInfo");
924 Array<LO> rowTranslationArray = *(amalInfo->getRowTranslation());
925 Array<LO> colTranslationArray = *(amalInfo->getColTranslation());
927 Kokkos::View<LO*, Kokkos::MemoryUnmanaged>
928 rowTranslationView(rowTranslationArray.
getRawPtr(), rowTranslationArray.
size());
929 Kokkos::View<LO*, Kokkos::MemoryUnmanaged>
930 colTranslationView(colTranslationArray.
getRawPtr(), colTranslationArray.
size());
933 LO numNodes = Teuchos::as<LocalOrdinal>(uniqueMap->getLocalNumElements());
934 typedef typename Kokkos::View<LocalOrdinal*, typename Node::device_type> id_translation_type;
935 id_translation_type rowTranslation(
"dofId2nodeId", rowTranslationArray.
size());
936 id_translation_type colTranslation(
"ov_dofId2nodeId", colTranslationArray.
size());
937 Kokkos::deep_copy(rowTranslation, rowTranslationView);
938 Kokkos::deep_copy(colTranslation, colTranslationView);
941 blkSize = A->GetFixedBlockSize();
944 if (A->IsView(
"stridedMaps") ==
true) {
948 blkSize = Teuchos::as<const LocalOrdinal>(strMap->getFixedBlockSize());
949 blkId = strMap->getStridedBlockId();
951 blkPartSize = Teuchos::as<LocalOrdinal>(strMap->getStridingData()[blkId]);
961 const typename STS::magnitudeType dirichletThreshold = STS::magnitude(as<SC>(pL.get<
double>(
"aggregation: Dirichlet threshold")));
962 const typename STS::magnitudeType rowSumTol = as<typename STS::magnitudeType>(pL.get<
double>(
"aggregation: row sum drop tol"));
964 const bool useGreedyDirichlet = pL.get<
bool>(
"aggregation: greedy Dirichlet");
968 const std::string algo = pL.get<std::string>(
"aggregation: drop scheme");
969 std::string classicalAlgoStr = pL.get<std::string>(
"aggregation: classical algo");
970 std::string distanceLaplacianAlgoStr = pL.get<std::string>(
"aggregation: distance laplacian algo");
971 std::string distanceLaplacianMetric = pL.get<std::string>(
"aggregation: distance laplacian metric");
974 if (pL.get<
bool>(
"aggregation: use ml scaling of drop tol"))
975 threshold = pL.get<
double>(
"aggregation: drop tol") / pow(2.0, currentLevel.GetLevelID());
977 threshold = as<MT>(pL.get<
double>(
"aggregation: drop tol"));
978 bool aggregationMayCreateDirichlet = pL.get<
bool>(
"aggregation: dropping may create Dirichlet");
981 const bool lumping = pL.get<
bool>(
"filtered matrix: use lumping");
982 const bool reuseGraph = pL.get<
bool>(
"filtered matrix: reuse graph");
983 const bool reuseEigenvalue = pL.get<
bool>(
"filtered matrix: reuse eigenvalue");
985 const bool useRootStencil = pL.get<
bool>(
"filtered matrix: use root stencil");
986 const bool useSpreadLumping = pL.get<
bool>(
"filtered matrix: use spread lumping");
988 const MT filteringDirichletThreshold = as<MT>(pL.get<
double>(
"filtered matrix: Dirichlet threshold"));
993 if (algo ==
"classical") {
994 GetOStream(
Runtime0) <<
"algorithm = \"" << algo <<
"\" classical algorithm = \"" << classicalAlgoStr <<
"\": threshold = " << threshold <<
", blocksize = " << A->GetFixedBlockSize() << std::endl;
995 }
else if (algo ==
"distance laplacian") {
996 GetOStream(
Runtime0) <<
"algorithm = \"" << algo <<
"\" distance laplacian algorithm = \"" << distanceLaplacianAlgoStr <<
"\" distance laplacian metric = \"" << distanceLaplacianMetric <<
"\": threshold = " << threshold <<
", blocksize = " << A->GetFixedBlockSize() << std::endl;
998 GetOStream(
Runtime0) <<
"algorithm = \"" << algo <<
"\": threshold = " << threshold <<
", blocksize = " << A->GetFixedBlockSize() << std::endl;
1011 auto crsA = toCrsMatrix(A);
1012 auto lclA = crsA->getLocalMatrixDevice();
1027 #define MueLu_runBoundaryFunctors(...) \
1029 auto boundaries = BoundaryDetection::BoundaryFunctor(lclA, __VA_ARGS__); \
1030 Kokkos::parallel_for("CoalesceDrop::BoundaryDetection", range, boundaries); \
1033 if (useGreedyDirichlet) {
1040 #undef MueLu_runBoundaryFunctors
1068 auto filtered_rowptr = rowptr_type(
"rowptr", lclA.numRows() + 1);
1069 auto graph_rowptr = rowptr_type(
"rowptr", numNodes + 1);
1071 Kokkos::pair<LocalOrdinal, LocalOrdinal> nnz = {0, 0};
1074 auto results = Kokkos::View<DecisionType*, memory_space>(
"results", lclA.nnz());
1078 std::string functorLabel =
"MueLu::CoalesceDrop::CountEntries";
1080 #if !defined(HAVE_MUELU_DEBUG)
1081 #define MueLu_runDroppingFunctors(...) \
1083 auto countingFunctor = MatrixConstruction::VectorCountingFunctor(lclA, blkPartSize, colTranslation, results, filtered_rowptr, graph_rowptr, __VA_ARGS__); \
1084 Kokkos::parallel_scan(functorLabel, range, countingFunctor, nnz); \
1087 #define MueLu_runDroppingFunctors(...) \
1089 auto debug = Misc::DebugFunctor(lclA, results); \
1090 auto countingFunctor = MatrixConstruction::VectorCountingFunctor(lclA, blkPartSize, colTranslation, results, filtered_rowptr, graph_rowptr, __VA_ARGS__, debug); \
1091 Kokkos::parallel_scan(functorLabel, range, countingFunctor, nnz); \
1097 if (threshold != zero) {
1101 if (algo ==
"classical") {
1102 if (classicalAlgoStr ==
"default") {
1105 if (aggregationMayCreateDirichlet) {
1109 mark_singletons_as_boundary);
1113 preserve_diagonals);
1115 }
else if (classicalAlgoStr ==
"unscaled cut") {
1117 }
else if (classicalAlgoStr ==
"scaled cut") {
1119 }
else if (classicalAlgoStr ==
"scaled cut symmetric") {
1122 TEUCHOS_TEST_FOR_EXCEPTION(
true,
Exceptions::RuntimeError,
"\"aggregation: classical algo\" must be one of (default|unscaled cut|scaled cut|scaled cut symmetric), not \"" << classicalAlgoStr <<
"\"");
1124 }
else if (algo ==
"signed classical" || algo ==
"block diagonal colored signed classical" || algo ==
"block diagonal signed classical") {
1127 if (aggregationMayCreateDirichlet) {
1131 mark_singletons_as_boundary);
1136 preserve_diagonals);
1138 }
else if (algo ==
"signed classical sa") {
1141 if (aggregationMayCreateDirichlet) {
1145 mark_singletons_as_boundary);
1150 preserve_diagonals);
1152 }
else if (algo ==
"distance laplacian") {
1154 auto coords = Get<RCP<doubleMultiVector>>(currentLevel,
"Coordinates");
1158 if (distanceLaplacianAlgoStr ==
"default") {
1161 if (aggregationMayCreateDirichlet) {
1165 mark_singletons_as_boundary);
1169 preserve_diagonals);
1171 }
else if (distanceLaplacianAlgoStr ==
"unscaled cut") {
1173 }
else if (distanceLaplacianAlgoStr ==
"scaled cut") {
1175 }
else if (distanceLaplacianAlgoStr ==
"scaled cut symmetric") {
1178 TEUCHOS_TEST_FOR_EXCEPTION(
true,
Exceptions::RuntimeError,
"\"aggregation: distance laplacian algo\" must be one of (default|unscaled cut|scaled cut|scaled cut symmetric), not \"" << distanceLaplacianAlgoStr <<
"\"");
1184 Kokkos::deep_copy(results,
KEEP);
1189 #undef MueLu_runDroppingFunctors
1193 GO numTotal = lclA.nnz();
1194 GO numDropped = numTotal - nnz_filtered;
1207 local_matrix_type lclFilteredA;
1209 lclFilteredA = local_matrix_type(
"filteredA", lclA.graph, lclA.numCols());
1211 auto colidx = entries_type(
"entries", nnz_filtered);
1212 auto values = values_type(
"values", nnz_filtered);
1213 lclFilteredA = local_matrix_type(
"filteredA",
1214 lclA.numRows(), lclA.numCols(),
1216 values, filtered_rowptr, colidx);
1219 local_graph_type lclGraph;
1221 auto colidx = entries_type(
"entries", nnz_graph);
1222 lclGraph = local_graph_type(colidx, graph_rowptr);
1228 Kokkos::parallel_for(
"MueLu::CoalesceDrop::Fill_lumped_reuse", range, fillFunctor);
1231 Kokkos::parallel_for(
"MueLu::CoalesceDrop::Fill_lumped_noreuse", range, fillFunctor);
1236 Kokkos::parallel_for(
"MueLu::CoalesceDrop::Fill_unlumped_reuse", range, fillFunctor);
1239 Kokkos::parallel_for(
"MueLu::CoalesceDrop::Fill_unlumped_noreuse", range, fillFunctor);
1244 filteredA->SetFixedBlockSize(blkSize);
1246 if (reuseEigenvalue) {
1251 filteredA->SetMaxEigenvalueEstimate(A->GetMaxEigenvalueEstimate());
1256 graph =
rcp(
new LWGraph_kokkos(lclGraph, uniqueMap, nonUniqueMap,
"amalgamated graph of A"));
1260 LO dofsPerNode = blkSize;
1262 Set(currentLevel,
"DofsPerNode", dofsPerNode);
1263 Set(currentLevel,
"Graph", graph);
1264 Set(currentLevel,
"A", filteredA);
1266 return std::make_tuple(numDropped, boundaryNodes);
1270 #endif // MUELU_COALESCEDROPFACTORY_KOKKOS_DEF_HPP
Drops entries the unscaled distance Laplacian.
#define MueLu_sumAll(rcpComm, in, out)
MueLu::DefaultLocalOrdinal LocalOrdinal
Lightweight MueLu representation of a compressed row storage graph.
KOKKOS_INLINE_FUNCTION void SetBoundaryNodeMap(const boundary_nodes_type bndry)
Set boolean array indicating which rows correspond to Dirichlet boundaries.
void setValidator(RCP< const ParameterEntryValidator > const &validator)
Functor that drops boundary nodes for a blockSize > 1 problem.
T & get(const std::string &name, T def_value)
Classical smoothed aggregation dropping criterion.
Functor that marks singletons (all off-diagonal entries in a row are dropped) as boundary.
Signed classical Ruge-Stueben dropping criterion.
Timer to be used in factories. Similar to Monitor but with additional timers.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
#define MueLu_runBoundaryFunctors(...)
One-liner description of what is happening.
ParameterList & set(std::string const &name, T &&value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
Signed classical smoothed aggregation dropping criterion.
Orders entries of row by .
Orders entries of row by where is the distance Laplacian.
Functor that marks singletons (all off-diagonal entries in a row are dropped) as boundary.
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Functor that symmetrizes the dropping decisions.
MueLu::DefaultGlobalOrdinal GlobalOrdinal
Functor that drops boundary nodes for a blockSize == 1 problem.
Class that holds all level-specific information.
Timer to be used in factories. Similar to SubMonitor but adds a timer level by level.
typename MueLu::LWGraph_kokkos< LocalOrdinal, GlobalOrdinal, Node >::boundary_nodes_type boundary_nodes_type
void DeclareInput(Level ¤tLevel) const
Input.
Functor that fills the filtered matrix while reusing the graph of the matrix before dropping...
Order each row by a criterion, compare the ratio of values and drop all entries once the ratio is bel...
Functor for marking nodes as Dirichlet.
Functor that drops all entries that are not on the block diagonal.
Functor that marks diagonal as kept, unless the are already marked as boundary.
Kokkos::RangePolicy< local_ordinal_type, execution_space > range_type
std::tuple< GlobalOrdinal, boundary_nodes_type > BuildVector(Level ¤tLevel) const
static RCP< Vector > Build(const Teuchos::RCP< const Map > &map, bool zeroOut=true)
RCP< const ParameterList > GetValidParameterList() const
Return a const parameter list of valid parameters that setParameterList() will accept.
void Build(Level ¤tLevel) const
Build an object with this factory.
Functor for marking nodes as Dirichlet based on rowsum.
#define SET_VALID_ENTRY(name)
std::tuple< RCP< LocalOrdinalVector >, RCP< LocalOrdinalVector > > GetBlockNumberMVs(Level ¤tLevel) const
Functor for marking nodes as Dirichlet in a block operator.
std::tuple< GlobalOrdinal, boundary_nodes_type > BuildScalar(Level ¤tLevel) const
Functor does not reuse the graph of the matrix for a problem with blockSize == 1. ...
static RCP< Matrix > Build(const RCP< const Map > &rowMap, size_t maxNumEntriesPerRow, Xpetra::ProfileType pftype=Xpetra::DynamicProfile)
Exception throws to report errors in the internal logical of the program.
#define TEUCHOS_ASSERT(assertion_test)
ParameterEntry & getEntry(const std::string &name)
Orders entries of row by .
#define MueLu_runDroppingFunctors(...)