ML  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
ml_viz.cpp
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact */
/* person and disclaimer. */
/* ******************************************************************** */
// Goal of this example is to present the visualization capabilities of
// ML. Using ML, the user can visualize the aggregates for all levels.
// This requires, as additional input, the coordinates of the fine-grid
// nodes. The output file is simple collection of 2D or 3D points,
// each of them containing the (double) value of the aggregate it belongs to.
// A freely-downloadable software, called XD3D, can for example
// be used to visualize the aggregates. ML can also visualize the effect
// of smoothers and the entire ML cycle on random vectors; see the
// `visualization' section of this example.
//
// \author Marzio Sala, SNL 9214
// \date Last modified on 19-Jan-05
#include "ml_include.h"
// the following code cannot be compiled without these Trilinos
// packages. Note that Galeri is required in the examples only (to
// generate the linear system), not by the ML library
#if defined(HAVE_ML_EPETRA) && defined(HAVE_ML_TEUCHOS) && defined(HAVE_ML_GALERI) && defined(HAVE_ML_AZTECOO)
#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_Map.h"
#include "Epetra_Vector.h"
#include "Epetra_VbrMatrix.h"
#include "Epetra_LinearProblem.h"
#include "AztecOO.h"
#include "Galeri_Maps.h"
#include "Galeri_CrsMatrices.h"
#include "Galeri_VbrMatrices.h"
#include "Galeri_Utils.h"
using namespace Teuchos;
using namespace Galeri;
// =========== //
// main driver //
// =========== //
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
#endif
// Create the linear problem using the Galeri package.
int NumPDEEqns = 5;
int nx = 32;
GaleriList.set("nx", nx);
GaleriList.set("ny", nx * Comm.NumProc());
GaleriList.set("mx", 1);
GaleriList.set("my", Comm.NumProc());
Epetra_Map* Map = CreateMap("Cartesian2D", Comm, GaleriList);
Epetra_CrsMatrix* CrsA = CreateCrsMatrix("Laplace2D", Map, GaleriList);
Epetra_VbrMatrix* A = CreateVbrMatrix(CrsA, NumPDEEqns);
Epetra_Vector LHS(A->Map()); LHS.Random();
Epetra_Vector RHS(A->Map()); RHS.PutScalar(0.0);
Epetra_LinearProblem Problem(A, &LHS, &RHS);
AztecOO solver(Problem);
// =========================== definition of coordinates =================
// use the following Galeri function to get the
// coordinates for a Cartesian grid. Note however that the
// visualization capabilites of Trilinos accept non-structured grid as
// well. Visualization and statistics occurs just after the ML
// preconditioner has been build.
Epetra_MultiVector* Coord = CreateCartesianCoordinates("2D", &(A->Map()),
GaleriList);
double* x_coord = (*Coord)[0];
double* y_coord = (*Coord)[1];
// =========================== begin of ML part ===========================
// create a parameter list for ML options
ParameterList MLList;
int *options = new int[AZ_OPTIONS_SIZE];
double *params = new double[AZ_PARAMS_SIZE];
// set defaults
ML_Epetra::SetDefaults("SA",MLList, options, params);
// overwrite some parameters. Please refer to the user's guide
// for more information
// some of the parameters do not differ from their default value,
// and they are here reported for the sake of clarity
// maximum number of levels
MLList.set("max levels",3);
MLList.set("increasing or decreasing","increasing");
MLList.set("smoother: type", "symmetric Gauss-Seidel");
// aggregation scheme set to Uncoupled. Note that the aggregates
// created by MIS can be visualized for serial runs only, while
// Uncoupled, METIS for both serial and parallel runs.
MLList.set("aggregation: type", "Uncoupled");
// ======================== //
// visualization parameters //
// ======================== //
//
// - set "viz: enable" to `false' to disable visualization and
// statistics.
// - set "x-coordinates" to the pointer of x-coor
// - set "viz: equation to plot" to the number of equation to
// be plotted (for vector problems only). Default is -1 (that is,
// plot all the equations)
// - set "viz: print starting solution" to print on file
// the starting solution vector, that was used for pre-
// and post-smoothing, and for the cycle. This may help to
// understand whether the smoothed solution is "smooth"
// or not.
//
// NOTE: visualization occurs *after* the creation of the ML preconditioner,
// by calling VisualizeAggregates(), VisualizeSmoothers(), and
// VisualizeCycle(). However, the user *must* enable visualization
// *before* creating the ML object. This is because ML must store some
// additional information about the aggregates.
//
// NOTE: the options above work only for "viz: output format" == "xyz"
// (default value) or "viz: output format" == "vtk".
// If "viz: output format" == "dx", the user
// can only plot the aggregates.
MLList.set("viz: output format", "vtk");
MLList.set("viz: enable", true);
MLList.set("x-coordinates", x_coord);
MLList.set("y-coordinates", y_coord);
MLList.set("z-coordinates", (double *)0);
MLList.set("viz: print starting solution", true);
// =============================== //
// end of visualization parameters //
// =============================== //
// create the preconditioner object and compute hierarchy
// ============= //
// visualization //
// ============= //
// 1.- print out the shape of the aggregates, plus some
// statistics
// 2.- print out the effect of presmoother and postsmoother
// on a random vector. Input integer number represent
// the number of applications of presmoother and postmsoother,
// respectively
// 3.- print out the effect of the ML cycle on a random vector.
// The integer parameter represents the number of cycles.
// Below, `5' and `1' refers to the number of pre-smoother and
// post-smoother applications. `10' refers to the number of ML
// cycle applications. In both cases, smoothers and ML cycle are
// applied to a random vector.
MLPrec->VisualizeSmoothers(5,1);
MLPrec->VisualizeCycle(10);
// ==================== //
// end of visualization //
// ==================== //
// destroy the preconditioner
delete MLPrec;
delete [] options;
delete [] params;
delete A;
delete Coord;
delete Map;
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return(EXIT_SUCCESS);
}
#else
#include <stdlib.h>
#include <stdio.h>
#ifdef HAVE_MPI
#include "mpi.h"
#endif
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
#endif
puts("Please configure ML with:");
puts("--enable-epetra");
puts("--enable-teuchos");
puts("--enable-aztecoo");
puts("--enable-galeri");
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return(EXIT_SUCCESS);
}
#endif /* #if defined(HAVE_ML_EPETRA) && defined(HAVE_ML_TEUCHOS) && defined(HAVE_ML_GALERI) && defined(HAVE_ML_AZTECOO) */