Intrepid
Public Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
Intrepid::Basis_HGRAD_LINE_Hermite_FEM< Scalar, ArrayScalar > Class Template Reference

Implements Hermite interpolant basis of degree n on the reference Line cell. The basis has cardinality 2n and spans a COMPLETE linear polynomial space. More...

#include <Intrepid_HGRAD_LINE_Hermite_FEM.hpp>

Inheritance diagram for Intrepid::Basis_HGRAD_LINE_Hermite_FEM< Scalar, ArrayScalar >:
Intrepid::Basis< Scalar, ArrayScalar >

Public Member Functions

 Basis_HGRAD_LINE_Hermite_FEM ()
 Default Constructor assumes the two interpolation points are the cell vertices. Cubic Hermite Interpolation.
 
 Basis_HGRAD_LINE_Hermite_FEM (const ArrayScalar &pts)
 Constructor. More...
 
 Basis_HGRAD_LINE_Hermite_FEM (int numPoints, const EPointType &pointType)
 Constructor. More...
 
void getValues (ArrayScalar &outputValues, const ArrayScalar &inputPoints, const EOperator operatorType) const
 Evaluation of a FEM basis on a reference Line cell. More...
 
void getValues (ArrayScalar &outputValues, const ArrayScalar &inputPoints, const ArrayScalar &cellVertices, const EOperator operatorType=OPERATOR_VALUE) const
 FVD basis evaluation: invocation of this method throws an exception.
 
virtual void getDofCoords (ArrayScalar &DofCoords) const
 implements the dofcoords interface
 
void printTags (std::ostream &os)
 
- Public Member Functions inherited from Intrepid::Basis< Scalar, ArrayScalar >
virtual ~Basis ()
 Destructor.
 
virtual int getCardinality () const
 Returns cardinality of the basis. More...
 
virtual int getDegree () const
 Returns the degree of the basis. More...
 
virtual const shards::CellTopology getBaseCellTopology () const
 Returns the base cell topology for which the basis is defined. See Shards documentation http://trilinos.sandia.gov/packages/shards for definition of base cell topology. More...
 
virtual EBasis getBasisType () const
 Returns the basis type. More...
 
virtual ECoordinates getCoordinateSystem () const
 Returns the type of coordinate system for which the basis is defined. More...
 
virtual int getDofOrdinal (const int subcDim, const int subcOrd, const int subcDofOrd)
 DoF tag to ordinal lookup. More...
 
virtual const std::vector
< std::vector< std::vector
< int > > > & 
getDofOrdinalData ()
 DoF tag to ordinal data structure.
 
virtual const std::vector< int > & getDofTag (const int dofOrd)
 DoF ordinal to DoF tag lookup. More...
 
virtual const std::vector
< std::vector< int > > & 
getAllDofTags ()
 Retrieves all DoF tags. More...
 

Private Types

template<typename T >
using RCP = Teuchos::RCP< T >
 
using SerialDenseMatrix = Teuchos::SerialDenseMatrix< int, Scalar >
 
using TAGS = std::vector< int >
 

Private Member Functions

void initializeTags ()
 Initializes tagToOrdinal_ and ordinalToTag_ lookup arrays.
 
void recurrence (ArrayScalar &P, ArrayScalar &Px, const Scalar x) const
 Evaluates $P_j(x_i)$ and $P_j'(x_i)$ at a particular point $x_i$.
 
void legendre_d (ArrayScalar &Pm, ArrayScalar &Pm1, const int m, const Scalar pt) const
 Evaluates $P_j^{(m)}(x_i) $ and $P_j^{(m+1)}(x_i) $ at a particular point $x_i$.
 
void setupVandermonde (bool factor=true)
 Form the Legendre/Derivative Vandermonde matrix at the given lattice points and have the linear solver factor with equilibration.
 

Private Attributes

FieldContainer< Scalar > latticePts_
 Holds the points defining the Hermite basis.
 
SerialDenseMatrix V_
 Contains the values of the Legendre polynomials and their derivatives.
 
Teuchos::SerialDenseSolver
< int, Scalar > 
solver_
 
TAGS tags_
 
bool isFactored_
 

Additional Inherited Members

- Protected Attributes inherited from Intrepid::Basis< Scalar, ArrayScalar >
int basisCardinality_
 Cardinality of the basis, i.e., the number of basis functions/degrees-of-freedom.
 
int basisDegree_
 Degree of the largest complete polynomial space that can be represented by the basis.
 
shards::CellTopology basisCellTopology_
 Base topology of the cells for which the basis is defined. See the Shards package http://trilinos.sandia.gov/packages/shards for definition of base cell topology.
 
EBasis basisType_
 Type of the basis.
 
ECoordinates basisCoordinates_
 The coordinate system for which the basis is defined.
 
bool basisTagsAreSet_
 "true" if tagToOrdinal_ and ordinalToTag_ have been initialized
 
std::vector< std::vector< int > > ordinalToTag_
 DoF ordinal to tag lookup table. More...
 
std::vector< std::vector
< std::vector< int > > > 
tagToOrdinal_
 DoF tag to ordinal lookup table. More...
 

Detailed Description

template<class Scalar, class ArrayScalar>
class Intrepid::Basis_HGRAD_LINE_Hermite_FEM< Scalar, ArrayScalar >

Implements Hermite interpolant basis of degree n on the reference Line cell. The basis has cardinality 2n and spans a COMPLETE linear polynomial space.

   The Hermite interpolant approximation space is \form#395
   where \form#396

\[\mathcal{H}_n = \{h_{2j}(x),h_{2j+1}\}_{j=0}^{n-1} \]

   The basis functions determined by the interpolation points \form#409
   which satisfy the ordering property

\[ -1\leq x_0 \leq \cdots \leq x_i \leq x_{i+1} \leq \cdots \leq x_n \leq 1 \]

   while the basis functions satisfy

\[ h_{2j}(x_i) = \delta_{ij},\quad h'_{2j}(x_i) = 0 \]

\[ h_{2j+1}(x_i) = 0,\quad h'_{2j+1}(x_i) = \delta_{ij} \]

   Basis functions and their derivatives are evaluated from the Legendre polynomials
   and their derivatives evaluated on the interpolation points and the input points in
   the getValues() method. Legendre polynomials and their derivatives are computed
   using the relations

\[ P_{j+1}(x) = x P_j(x) + \frac{x^2-1}{j+1}P_j^{(1)}(x),\quad P_0(x) = 1 \]

\[ P_{j+1}^{(m)(x)} = (j+m)P_j^{(m-1)}(x) + x P_j^{(m)}(x),\quad P_j^{(m)} = 0,\;\forall j<m\]

Definition at line 93 of file Intrepid_HGRAD_LINE_Hermite_FEM.hpp.

Constructor & Destructor Documentation

template<class Scalar , class ArrayScalar >
Intrepid::Basis_HGRAD_LINE_Hermite_FEM< Scalar, ArrayScalar >::Basis_HGRAD_LINE_Hermite_FEM ( const ArrayScalar &  pts)
template<class Scalar , class ArrayScalar >
Intrepid::Basis_HGRAD_LINE_Hermite_FEM< Scalar, ArrayScalar >::Basis_HGRAD_LINE_Hermite_FEM ( int  numPoints,
const EPointType &  pointType 
)

Member Function Documentation

template<class Scalar , class ArrayScalar >
void Intrepid::Basis_HGRAD_LINE_Hermite_FEM< Scalar, ArrayScalar >::getValues ( ArrayScalar &  outputValues,
const ArrayScalar &  inputPoints,
const EOperator  operatorType 
) const
virtual

Evaluation of a FEM basis on a reference Line cell.

    Returns values of <var>operatorType</var> acting on FEM basis functions for a set of
    points in the <strong>reference Line</strong> cell. For rank and dimensions of
    I/O array arguments see Section \ref basis_md_array_sec .
Parameters
outputValues[out] - variable rank array with the basis values
inputPoints[in] - rank-n array (P,D) with the evaluation points
operatorType[in] - the operator acting on the basis functions

Implements Intrepid::Basis< Scalar, ArrayScalar >.

Definition at line 252 of file Intrepid_HGRAD_LINE_Hermite_FEMDef.hpp.


The documentation for this class was generated from the following files: