EpetraExt
Development
|
Implements Epetra_Operator
as a product of one or more Epetra_Operator
objects.
More...
#include <EpetraExt_ProductOperator.h>
Public types | |
enum | EApplyMode { APPLY_MODE_APPLY, APPLY_MODE_APPLY_INVERSE } |
Constructors / initializers / accessors | |
ProductOperator () | |
Construct to uninitialized. More... | |
ProductOperator (const int num_Op, const Teuchos::RCP< const Epetra_Operator > Op[], const Teuchos::ETransp Op_trans[], const EApplyMode Op_inverse[]) | |
Calls initialize() . More... | |
void | initialize (const int num_Op, const Teuchos::RCP< const Epetra_Operator > Op[], const Teuchos::ETransp Op_trans[], const EApplyMode Op_inverse[]) |
Setup with constituent operators. More... | |
void | uninitialize (int *num_Op, Teuchos::RCP< const Epetra_Operator > Op[], Teuchos::ETransp Op_trans[], EApplyMode p_inverse[]) |
Set to an uninitialized state and wipe out memory. More... | |
void | applyConstituent (const int k, Teuchos::ETransp Op_trans, EApplyMode Op_inverse, const Epetra_MultiVector &X_k, Epetra_MultiVector *Y_k) const |
Apply the kth aggregate operator M[k] correctly. More... | |
int | num_Op () const |
Return the number of aggregate opeators. More... | |
Teuchos::RCP< const Epetra_Operator > | Op (int k) const |
Access the kth operator (zero-based). More... | |
Teuchos::ETransp | Op_trans (int k) const |
Access the transpose mode of the kth operator (zero-based). More... | |
EApplyMode | Op_inverse (int k) const |
Access the inverse mode of the kth operator (zero-based). More... | |
Overridden from Epetra_Operator | |
int | SetUseTranspose (bool UseTranspose) |
int | Apply (const Epetra_MultiVector &X, Epetra_MultiVector &Y) const |
int | ApplyInverse (const Epetra_MultiVector &X, Epetra_MultiVector &Y) const |
double | NormInf () const |
const char * | Label () const |
bool | UseTranspose () const |
bool | HasNormInf () const |
const Epetra_Comm & | Comm () const |
const Epetra_Map & | OperatorDomainMap () const |
const Epetra_Map & | OperatorRangeMap () const |
Additional Inherited Members |
Implements Epetra_Operator
as a product of one or more Epetra_Operator
objects.
This class implements a product operator of the form:
M = M[0]*M[1]*...*M[num_Op-1]
and operator applications are performed one constituent operator at a time as:
Forward Mat-vec: Y = M * X T[k-1] = M[k]*T[k] for k = num_Op-1...0 where: T[num_Op-1] = X (input vector) where: T[-1] = Y (output vector) Adjoint Mat-vec: Y = M' * X T[k] = M[k]'*T[k-1] for k = 0...num_Op-1 where: T[-1] = X (input vector) where: T[num_Op-1] = Y (output vector)
Likewise, the inverse can also be applied (if all of the constituent operators support the inverse operation) as:
Forward Inverse Mat-vec: Y = inv(M) * X T[k] = inv(M[k])*T[k-1] for k = 0...num_Op-1 for k = 0...num_Op-1 where: T[-1] = X (input vector) where: T[num_Op-1] = Y (output vector) Adjoint Inverse Mat-vec: Y = inv(M') * X T[k] = inv(M[k]')*T[k-1] for k = num_Op-1...0 where: T[num_Op-1] = X (input vector) where: T[-1] = Y (output vector)
Note that maps for the result of the inverse of an operator is the same as the result of the adjoint of the operator and the map for the result of the inverse of the adjoint is the same as for the result the non-inverse forward opeator.
The client constructs this object with a list of Epetra_Operator
objects an how the non-transposed operator is to be viewed and if it is to be views as its inverse or not (see initialize()
).
Note: The Epetra_Map objects returned from OperatorDomainMap() and OperatorRangeMap() must always be with respect to the non-transposed operator! This is very strange behavior and is totally undocumented in the Epetra_Operator interface but it seems to be the case.
Definition at line 139 of file EpetraExt_ProductOperator.h.
Enumerator | |
---|---|
APPLY_MODE_APPLY | |
APPLY_MODE_APPLY_INVERSE |
Definition at line 146 of file EpetraExt_ProductOperator.h.
EpetraExt::ProductOperator::ProductOperator | ( | ) |
Construct to uninitialized.
Definition at line 50 of file EpetraExt_ProductOperator.cpp.
EpetraExt::ProductOperator::ProductOperator | ( | const int | num_Op, |
const Teuchos::RCP< const Epetra_Operator > | Op[], | ||
const Teuchos::ETransp | Op_trans[], | ||
const EApplyMode | Op_inverse[] | ||
) |
Calls initialize()
.
Definition at line 53 of file EpetraExt_ProductOperator.cpp.
void EpetraExt::ProductOperator::initialize | ( | const int | num_Op, |
const Teuchos::RCP< const Epetra_Operator > | Op[], | ||
const Teuchos::ETransp | Op_trans[], | ||
const EApplyMode | Op_inverse[] | ||
) |
Setup with constituent operators.
@param num_Op [in] Number of constinuent operators. @param Op [in] Array (length <tt>num_Op</tt>) of smart pointers to <tt>Epetra_Operator objects that implement each constituent operator. @param Op_trans [in] Array (length <tt>num_Op</tt>) that determines the transpose mode of the constituent operator (see below). @param Op_inverse [in] Array (length <tt>num_Op</tt>) that determines the inverse apply mode of the constituent operator (see below). Preconditions:<ul> <li><tt>num_Op > 0</tt> <li><tt>Op!=NULL</tt> <li><tt>Op[k].get()!=NULL</tt>, for <tt>k=0...num_Op-1</tt> <li><tt>Op_trans!=NULL</tt> <li><tt>Op_inverse!=NULL</tt> </ul> Postconditions:<ul> <li><tt>this->num_Op()==num_Op</tt> <li><tt>this->Op(k).get()==Op[k].get()</tt>, for <tt>k=0...num_Op-1</tt> <li><tt>this->Op_trans(k)==Op_trans[k]</tt>, for <tt>k=0...num_Op-1</tt> <li><tt>this->Op_inverse(k)==Op_inverse[k]</tt>, for <tt>k=0...num_Op-1</tt> </ul> The forward constituent operator <tt>T[k-1] = M[k]*T[k]</tt> described in the main documenatation above is defined as follows:
Op[k]->SetUseTranspose( Op_trans[k]!=Teuchos::NO_TRANS ); if( Op_inverse[k]==APPLY_MODE_APPLY ) Op[k]->Apply( T[k], T[k-1] ); else Op[k]->ApplyInverse( T[k], T[k-1] );
The inverse constituent operator T[k] = inv(M[k])*T[k-1]
described in the main documenatation above is defined as follows:
Op[k]->SetUseTranspose( Op_trans[k]!=Teuchos::NO_TRANS ); if( Op_inverse[k]==APPLY_MODE_APPLY ) Op[k]->ApplyInverse( T[k-1], T[k] ); else Op[k]->Apply( T[k-1], T[k] );
The other transposed constituent operators M[k]'
and inv(M[k]')
are defined by simply changing the value of the transpose as Op[k]->SetUseTranspose( Op_trans[k]==Teuchos::NO_TRANS );
. Note, that Op[k]->SetUseTranspose(...)
is called immediately before Op[k]->Apply(...)
or Op[k]->ApplyInverse(...)
is called to avoid tricky problems that could occur with multiple uses of the same operator.
Definition at line 63 of file EpetraExt_ProductOperator.cpp.
void EpetraExt::ProductOperator::uninitialize | ( | int * | num_Op, |
Teuchos::RCP< const Epetra_Operator > | Op[], | ||
Teuchos::ETransp | Op_trans[], | ||
EApplyMode | p_inverse[] | ||
) |
Set to an uninitialized state and wipe out memory.
Postconditions:
this->num_Op()==0
Definition at line 89 of file EpetraExt_ProductOperator.cpp.
void EpetraExt::ProductOperator::applyConstituent | ( | const int | k, |
Teuchos::ETransp | Op_trans, | ||
EApplyMode | Op_inverse, | ||
const Epetra_MultiVector & | X_k, | ||
Epetra_MultiVector * | Y_k | ||
) | const |
Apply the kth aggregate operator M[k] correctly.
k | [in] Gives the index (zero-based) of the constituent operator to apply. |
Op_trans | [in] Determines if the transpose of the constituent operator is to be applied. |
Op_inverse | [in] Determines if the operator or its inverse (if supported) should be applied. |
X_k | [in] The input vector. |
Y_k | [out] The output vector. |
Clients should call this function to correctly apply a constitient operator!
Definition at line 117 of file EpetraExt_ProductOperator.cpp.
|
inline |
Return the number of aggregate opeators.
A return value of 0
is a flag that this
is not initialized yet.
Definition at line 372 of file EpetraExt_ProductOperator.h.
|
inline |
Access the kth operator (zero-based).
Preconditions:
0 <= k <= this->num_Op()-1
Warning! This is the raw opeator passed into initialize(...)
. In order to apply the constituent operator M[k]
you must call ApplyConstituent()
.
Definition at line 379 of file EpetraExt_ProductOperator.h.
|
inline |
Access the transpose mode of the kth operator (zero-based).
Preconditions:
0 <= k <= this->num_Op()-1
Definition at line 387 of file EpetraExt_ProductOperator.h.
|
inline |
Access the inverse mode of the kth operator (zero-based).
Preconditions:
0 <= k <= this->num_Op()-1
Definition at line 395 of file EpetraExt_ProductOperator.h.
|
virtual |
Implements Epetra_Operator.
Definition at line 140 of file EpetraExt_ProductOperator.cpp.
|
virtual |
Implements Epetra_Operator.
Definition at line 147 of file EpetraExt_ProductOperator.cpp.
|
virtual |
Implements Epetra_Operator.
Definition at line 177 of file EpetraExt_ProductOperator.cpp.
|
virtual |
Implements Epetra_Operator.
Definition at line 207 of file EpetraExt_ProductOperator.cpp.
|
virtual |
Implements Epetra_Operator.
Definition at line 213 of file EpetraExt_ProductOperator.cpp.
|
virtual |
Implements Epetra_Operator.
Definition at line 219 of file EpetraExt_ProductOperator.cpp.
|
virtual |
Implements Epetra_Operator.
Definition at line 225 of file EpetraExt_ProductOperator.cpp.
|
virtual |
Implements Epetra_Operator.
Definition at line 232 of file EpetraExt_ProductOperator.cpp.
|
virtual |
Implements Epetra_Operator.
Definition at line 239 of file EpetraExt_ProductOperator.cpp.
|
virtual |
Implements Epetra_Operator.
Definition at line 249 of file EpetraExt_ProductOperator.cpp.