Didasko  Development
 All Classes Namespaces Files Functions Variables Pages
// @HEADER
// ***********************************************************************
//
// Didasko Tutorial Package
// Copyright (2005) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions about Didasko? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ***********************************************************************
// @HEADER
// Use of Epetra_Operator
// This code should be run with at least two processes
#include "Didasko_ConfigDefs.h"
#if defined(HAVE_DIDASKO_EPETRA)
#include "Epetra_ConfigDefs.h"
#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_Map.h"
#include "Epetra_Vector.h"
#include "Epetra_MultiVector.h"
#include "Epetra_Operator.h"
#include "Epetra_Import.h"
#include "Epetra_IntSerialDenseVector.h"
// auxiliary function to local an index in an integer vector
int find( int key, int vector[], int Length )
{
for( int i=0 ; i<Length ; ++i ) {
if( vector[i] == key ) return i;
}
return -1;
}
// ==================== //
// TriDiagonal Operator //
// -------------------- //
// NOTE: Will not work with IndexBase != 0
class TriDiagonalOperator : public Epetra_Operator
{
public:
// constructor
TriDiagonalOperator( double diag_minus_one,
double diag,
double diag_plus_one,
const Epetra_Map & Map) :
Map_( Map ),
diag_minus_one_(diag_minus_one),
diag_(diag),
diag_plus_one_(diag_plus_one)
{
// build the importer
// Each local node will need the node+1 and node-1
// (except for global node 0 and global node NumGlobalElemenets-1
NumMyElements_ = Map_.NumMyElements();
NumGlobalElements_ = Map_.NumGlobalElements();
int* MyGlobalElements = new int[NumMyElements_];
Map_.MyGlobalElements(MyGlobalElements);
// count the nodes required from other processors
// (this will be an upper bound of the # of required nodes
// because I may count twice an external node)
int count=0;
for( int i=0 ; i<NumMyElements_ ; ++i ) {
int globalIndex = MyGlobalElements[i];
// no -1 node for the first node of the grid
if( globalIndex>0 )
if( Map.LID(globalIndex-1) == -1 ) ++count;
// now +1 node for the last node of the grid
if( globalIndex<NumGlobalElements_-1 )
if( Map.LID(globalIndex+1) == -1 ) ++count;
++count;
}
// now allocate space for local nodes and external nodes
// (an external node is a node required for the matrix-vector
// product, but owned by another process)
int Length = count;
std::vector<int> ListOfNodes(Length);
count=0;
for( int i=0 ; i<NumMyElements_ ; ++i ) {
int globalIndex = MyGlobalElements[i];
// no -1 node for the first node of the grid
if( globalIndex>0 ) {
if( Map.LID(globalIndex-1) == -1 )
if( find( globalIndex-1, ListOfNodes.data(), Length) == -1 ) {
ListOfNodes[count] = globalIndex-1;
++count;
}
}
// now +1 node for the last node of the grid
if( globalIndex<NumGlobalElements_-1 ) {
if( Map.LID(globalIndex+1) == -1 ) {
if( find( globalIndex+1, ListOfNodes.data(), Length) == -1 ) {
ListOfNodes[count] = globalIndex+1;
++count;
}
}
}
ListOfNodes[count] = globalIndex;
++count;
}
/*
cout << "count = " << count << endl;
for( int i=0 ; i<count ; i++ ) {
cout << "ListOfNodes[" << i << "] = " << ListOfNodes[i] << endl;
}
*/
// create a Map defined using ListOfNodes
ImportMap_ = new Epetra_Map(-1,count,ListOfNodes.data(),0,Map_.Comm());
Importer_ = new Epetra_Import(*ImportMap_,Map_);
delete[] MyGlobalElements;
return;
}
// application of the tridiagonal operator
int Apply( const Epetra_MultiVector & X,
Epetra_MultiVector & Y ) const
{
cout << X;
// maybe some error checks on MultiVector Lenghts
// for the future...
Epetra_MultiVector Xext((*ImportMap_),X.NumVectors());
// this will contain local nodes and the required extenal nodes
Xext.Import(X,*Importer_,Insert);
for( int i=0 ; i<X.MyLength() ; ++i ) {
int globalRow = Map_.GID(i);
int iMinusOne = (*ImportMap_).LID(globalRow-1);
int iPlusOne = (*ImportMap_).LID(globalRow+1);
printf("%d %d %d\n", globalRow, iMinusOne, iPlusOne);
for( int vec=0 ; vec<X.NumVectors() ; ++vec ) {
Y[vec][i] = diag_ * X[vec][i];
if( iMinusOne != -1 )
Y[vec][i] += diag_minus_one_ * Xext[vec][iMinusOne];
if( iPlusOne != -1 )
Y[vec][i] += diag_plus_one_ * Xext[vec][iPlusOne];
}
}
return true;
}
// other function
int SetUseTranspose( bool UseTranspose)
{
return(0);
}
Epetra_MultiVector & Y ) const
{
return 0;
}
double NormInf() const
{
return( abs(diag_) + abs(diag_minus_one_) + abs(diag_plus_one_) );
}
const char * Label () const
{
return "TriDiagonalOperator";
}
bool UseTranspose() const
{
return false;
}
bool HasNormInf () const
{
return true;
}
const Epetra_Comm & Comm() const
{
return( Map_.Comm() );
}
const Epetra_Map & OperatorDomainMap() const
{
return( Map_ );
}
const Epetra_Map & OperatorRangeMap() const
{
return( Map_ );
}
private:
Epetra_Map Map_;
int NumMyElements_;
int NumGlobalElements_;
double diag_minus_one_; // value in the sub-diagonal
double diag_; // value in the diagonal
double diag_plus_one_; // value in the super-diagonal
Epetra_Import *Importer_;
Epetra_Map *ImportMap_;
};
// =========== //
// main driver //
// ----------- //
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
#endif
// global dimension of the problem, could be any positive number
int NumGlobalElements( 5 );
// linear decomposition (for simplicity, could be general)
Epetra_Map Map(NumGlobalElements,0,Comm );
// define two vectors based on Map
Epetra_Vector x(Map);
Epetra_Vector y(Map);
int NumMyElements = Map.NumMyElements();
Epetra_IntSerialDenseVector MyGlobalElements(NumMyElements);
Map.MyGlobalElements( MyGlobalElements.Values() );
// x is a linear function, Laplace applied to it
// should be zero except for the boundary nodes
for( int i=0 ; i<NumMyElements ; ++i )
x[i] = 1.0*MyGlobalElements[i];
// define a linear operator, as previously defined in class
// TriDiagonalOperator
TriDiagonalOperator TriDiagOp(-1.0,2.0,-1.0,Map);
TriDiagOp.Apply(x,y);
cout << x;
cout << y;
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return( EXIT_SUCCESS );
}
#else
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
puts("Please configure Didasko with:\n"
"--enable-epetra");
return 0;
}
#endif