Amesos2 - Direct Sparse Solver Interfaces  Version of the Day
Amesos2_Superludist_def.hpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Amesos2: Templated Direct Sparse Solver Package
4 //
5 // Copyright 2011 NTESS and the Amesos2 contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
18 #ifndef AMESOS2_SUPERLUDIST_DEF_HPP
19 #define AMESOS2_SUPERLUDIST_DEF_HPP
20 
21 #include <Teuchos_Tuple.hpp>
22 #include <Teuchos_StandardParameterEntryValidators.hpp>
23 #include <Teuchos_DefaultMpiComm.hpp>
24 #include <Teuchos_Details_MpiTypeTraits.hpp>
25 
28 #include "Amesos2_Util.hpp"
29 
30 
31 namespace Amesos2 {
32 
33 
34  template <class Matrix, class Vector>
35  Superludist<Matrix,Vector>::Superludist(Teuchos::RCP<const Matrix> A,
36  Teuchos::RCP<Vector> X,
37  Teuchos::RCP<const Vector> B)
38  : SolverCore<Amesos2::Superludist,Matrix,Vector>(A, X, B)
39  , bvals_()
40  , xvals_()
41  , in_grid_(false)
42  , force_symbfact_(false)
43  , is_contiguous_(true)
44  {
45  using Teuchos::Comm;
46  // It's OK to depend on MpiComm explicitly here, because
47  // SuperLU_DIST requires MPI anyway.
48  using Teuchos::MpiComm;
49  using Teuchos::outArg;
50  using Teuchos::ParameterList;
51  using Teuchos::parameterList;
52  using Teuchos::RCP;
53  using Teuchos::rcp;
54  using Teuchos::rcp_dynamic_cast;
55  using Teuchos::REDUCE_SUM;
56  using Teuchos::reduceAll;
57  typedef global_ordinal_type GO;
58  typedef Tpetra::Map<local_ordinal_type, GO, node_type> map_type;
59 
61  // Set up the SuperLU_DIST processor grid //
63 
64  RCP<const Comm<int> > comm = this->getComm ();
65  const int myRank = comm->getRank ();
66  const int numProcs = comm->getSize ();
67 
68  SLUD::int_t nprow, npcol;
69  get_default_grid_size (numProcs, nprow, npcol);
70 
71  {
72  // FIXME (mfh 16 Dec 2014) getComm() just returns
73  // matrixA_->getComm(), so it's not clear why we need to ask for
74  // the matrix's communicator separately here.
75  RCP<const Comm<int> > matComm = this->matrixA_->getComm ();
76  TEUCHOS_TEST_FOR_EXCEPTION(
77  matComm.is_null (), std::logic_error, "Amesos2::Superlustdist "
78  "constructor: The matrix's communicator is null!");
79  RCP<const MpiComm<int> > matMpiComm =
80  rcp_dynamic_cast<const MpiComm<int> > (matComm);
81  // FIXME (mfh 16 Dec 2014) If the matrix's communicator is a
82  // SerialComm, we probably could just use MPI_COMM_SELF here.
83  // I'm not sure if SuperLU_DIST is smart enough to handle that
84  // case, though.
85  TEUCHOS_TEST_FOR_EXCEPTION(
86  matMpiComm.is_null (), std::logic_error, "Amesos2::Superlustdist "
87  "constructor: The matrix's communicator is not an MpiComm!");
88  TEUCHOS_TEST_FOR_EXCEPTION(
89  matMpiComm->getRawMpiComm ().is_null (), std::logic_error, "Amesos2::"
90  "Superlustdist constructor: The matrix's communicator claims to be a "
91  "Teuchos::MpiComm<int>, but its getRawPtrComm() method returns "
92  "Teuchos::null! This means that the underlying MPI_Comm doesn't even "
93  "exist, which likely implies that the Teuchos::MpiComm was constructed "
94  "incorrectly. It means something different than if the MPI_Comm were "
95  "MPI_COMM_NULL.");
96  MPI_Comm rawMpiComm = (* (matMpiComm->getRawMpiComm ())) ();
97  data_.mat_comm = rawMpiComm;
98  // This looks a bit like ScaLAPACK's grid initialization (which
99  // technically takes place in the BLACS, not in ScaLAPACK
100  // proper). See http://netlib.org/scalapack/slug/node34.html.
101  // The main difference is that SuperLU_DIST depends explicitly
102  // on MPI, while the BLACS hides its communication protocol.
103  SLUD::superlu_gridinit(data_.mat_comm, nprow, npcol, &(data_.grid));
104  }
105 
107  // Set some default parameters. //
108  // //
109  // Must do this after grid has been created in //
110  // case user specifies the nprow and npcol parameters //
112  SLUD::set_default_options_dist(&data_.options);
113 
114  RCP<ParameterList> default_params =
115  parameterList (* (this->getValidParameters ()));
116  this->setParameters (default_params);
117 
118  // Set some internal options
119  data_.options.Fact = SLUD::DOFACT;
120  data_.equed = SLUD::NOEQUIL; // No equilibration has yet been performed
121  data_.options.SolveInitialized = SLUD::NO;
122  data_.options.RefineInitialized = SLUD::NO;
123  data_.rowequ = false;
124  data_.colequ = false;
125  data_.perm_r.resize(this->globalNumRows_);
126  data_.perm_c.resize(this->globalNumCols_);
127  data_.largediag_mc64_job = 4;
128  for (global_size_type i = 0; i < this->globalNumRows_; i++)
129  data_.perm_r[i] = i;
130  for (global_size_type i = 0; i < this->globalNumCols_; i++)
131  data_.perm_c[i] = i;
132 
134  // Set up a communicator for the parallel column ordering and //
135  // parallel symbolic factorization. //
137  data_.symb_comm = MPI_COMM_NULL;
138 
139  // domains is the next power of 2 less than nprow*npcol. This
140  // value will be used for creating an MPI communicator for the
141  // pre-ordering and symbolic factorization methods.
142  data_.domains = (int) ( pow(2.0, floor(log10((double)nprow*npcol)/log10(2.0))) );
143 
144  const int color = (myRank < data_.domains) ? 0 : MPI_UNDEFINED;
145  MPI_Comm_split (data_.mat_comm, color, myRank, &(data_.symb_comm));
146 
148  // Set up a row Map that only includes processes that are in the
149  // SuperLU process grid. This will be used for redistributing A.
151 
152  // mfh 16 Dec 2014: We could use createWeightedContigMapWithNode
153  // with myProcParticipates as the weight, but that costs an extra
154  // all-reduce.
155 
156  // Set to 1 if I am in the grid, and I get some of the matrix rows.
157  int myProcParticipates = 0;
158  if (myRank < nprow * npcol) {
159  in_grid_ = true;
160  myProcParticipates = 1;
161  }
162 
163  // Compute how many processes in the communicator belong to the
164  // process grid.
165  int numParticipatingProcs = 0;
166  reduceAll<int, int> (*comm, REDUCE_SUM, myProcParticipates,
167  outArg (numParticipatingProcs));
168  TEUCHOS_TEST_FOR_EXCEPTION(
169  this->globalNumRows_ != 0 && numParticipatingProcs == 0,
170  std::logic_error, "Amesos2::Superludist constructor: The matrix has "
171  << this->globalNumRows_ << " > 0 global row(s), but no processes in the "
172  "communicator want to participate in its factorization! nprow = "
173  << nprow << " and npcol = " << npcol << ".");
174 
175  // Divide up the rows among the participating processes.
176  size_t myNumRows = 0;
177  {
178  const GO GNR = static_cast<GO> (this->globalNumRows_);
179  const GO quotient = (numParticipatingProcs == 0) ? static_cast<GO> (0) :
180  GNR / static_cast<GO> (numParticipatingProcs);
181  const GO remainder =
182  GNR - quotient * static_cast<GO> (numParticipatingProcs);
183  const GO lclNumRows = (static_cast<GO> (myRank) < remainder) ?
184  (quotient + static_cast<GO> (1)) : quotient;
185  myNumRows = static_cast<size_t> (lclNumRows);
186  }
187 
188  // TODO: might only need to initialize if parallel symbolic factorization is requested.
189  const GO indexBase = this->matrixA_->getRowMap ()->getIndexBase ();
191  rcp (new map_type (this->globalNumRows_, myNumRows, indexBase, comm));
192 
194  // Do some other initialization //
196 
197  data_.A.Store = NULL;
198  function_map::LUstructInit(this->globalNumRows_, this->globalNumCols_, &(data_.lu));
199  SLUD::PStatInit(&(data_.stat));
200  // We do not use ScalePermstructInit because we will use our own
201  // arrays for storing perm_r and perm_c
202  data_.scale_perm.perm_r = data_.perm_r.getRawPtr();
203  data_.scale_perm.perm_c = data_.perm_c.getRawPtr();
204  }
205 
206 
207  template <class Matrix, class Vector>
209  {
210  /* Free SuperLU_DIST data_types
211  * - Matrices
212  * - Vectors
213  * - Stat object
214  * - ScalePerm, LUstruct, grid, and solve objects
215  *
216  * Note: the function definitions are the same regardless whether
217  * complex or real, so we arbitrarily use the D namespace
218  */
219  if ( this->status_.getNumPreOrder() > 0 ){
221 #if defined(AMESOS2_ENABLES_SUPERLUDIST_VERSION5_AND_HIGHER)
222  SUPERLU_FREE( data_.sizes );
223  SUPERLU_FREE( data_.fstVtxSep );
224 #else
225  free( data_.sizes );
226  free( data_.fstVtxSep );
227 #endif
228  }
229 
230  // Cleanup old matrix store memory if it's non-NULL. Our
231  // Teuchos::Array's will destroy rowind, colptr, and nzval for us
232  if( data_.A.Store != NULL ){
233  SLUD::Destroy_SuperMatrix_Store_dist( &(data_.A) );
234  }
235 
236  // LU data is initialized in numericFactorization_impl()
237  if ( this->status_.getNumNumericFact() > 0 ){
238  function_map::Destroy_LU(this->globalNumRows_, &(data_.grid), &(data_.lu));
239  }
240  function_map::LUstructFree(&(data_.lu));
241 
242  // If a symbolic factorization is ever performed without a
243  // follow-up numericfactorization, there are some arrays in the
244  // Pslu_freeable struct which will never be free'd by
245  // SuperLU_DIST.
246  if ( this->status_.symbolicFactorizationDone() &&
247  !this->status_.numericFactorizationDone() ){
248  if ( data_.pslu_freeable.xlsub != NULL ){
249 #if defined(AMESOS2_ENABLES_SUPERLUDIST_VERSION5_AND_HIGHER)
250  SUPERLU_FREE( data_.pslu_freeable.xlsub );
251  SUPERLU_FREE( data_.pslu_freeable.lsub );
252 #else
253  free( data_.pslu_freeable.xlsub );
254  free( data_.pslu_freeable.lsub );
255 #endif
256  }
257  if ( data_.pslu_freeable.xusub != NULL ){
258 #if defined(AMESOS2_ENABLES_SUPERLUDIST_VERSION5_AND_HIGHER)
259  SUPERLU_FREE( data_.pslu_freeable.xusub );
260  SUPERLU_FREE( data_.pslu_freeable.usub );
261 #else
262  free( data_.pslu_freeable.xusub );
263  free( data_.pslu_freeable.usub );
264 #endif
265  }
266  if ( data_.pslu_freeable.supno_loc != NULL ){
267 #if defined(AMESOS2_ENABLES_SUPERLUDIST_VERSION5_AND_HIGHER)
268  SUPERLU_FREE( data_.pslu_freeable.supno_loc );
269  SUPERLU_FREE( data_.pslu_freeable.xsup_beg_loc );
270  SUPERLU_FREE( data_.pslu_freeable.xsup_end_loc );
271 #else
272  free( data_.pslu_freeable.supno_loc );
273  free( data_.pslu_freeable.xsup_beg_loc );
274  free( data_.pslu_freeable.xsup_end_loc );
275 #endif
276  }
277 #if defined(AMESOS2_ENABLES_SUPERLUDIST_VERSION5_AND_HIGHER)
278  SUPERLU_FREE( data_.pslu_freeable.globToLoc );
279 #else
280  free( data_.pslu_freeable.globToLoc );
281 #endif
282  }
283 
284  SLUD::PStatFree( &(data_.stat) ) ;
285 
286  // Teuchos::Arrays will free R, C, perm_r, and perm_c
287  // SLUD::D::ScalePermstructFree(&(data_.scale_perm));
288 
289  if ( data_.options.SolveInitialized == SLUD::YES )
290  function_map::SolveFinalize(&(data_.options), &(data_.solve_struct));
291 
292  // gridexit of an older version frees SuperLU_MPI_DOUBLE_COMPLE,
293  // which could cause an issue if there are still active instances of superludist?
294  SLUD::superlu_gridexit(&(data_.grid)); // TODO: are there any
295  // cases where grid
296  // wouldn't be initialized?
297 
298  if ( data_.symb_comm != MPI_COMM_NULL ) MPI_Comm_free(&(data_.symb_comm));
299  }
300 
301  template<class Matrix, class Vector>
302  void
304  {
305  int job = data_.largediag_mc64_job;
306  if (job == 5)
307  {
308  data_.R1.resize(data_.A.nrow);
309  data_.C1.resize(data_.A.ncol);
310  }
311 
312  SLUD::NCformat *GAstore = (SLUD::NCformat*) GA.Store;
313  SLUD::int_t* colptr = GAstore->colptr;
314  SLUD::int_t* rowind = GAstore->rowind;
315  SLUD::int_t nnz = GAstore->nnz;
316  slu_type *a_GA = (slu_type *) GAstore->nzval;
317  MPI_Datatype mpi_dtype = Teuchos::Details::MpiTypeTraits<magnitude_type>::getType();
318  MPI_Datatype mpi_itype = Teuchos::Details::MpiTypeTraits<SLUD::int_t>::getType();
319 
320  int iinfo = 0;
321  if ( !data_.grid.iam ) { /* Process 0 finds a row permutation */
322  iinfo = function_map::ldperm_dist(job, data_.A.nrow, nnz, colptr, rowind, a_GA,
323  data_.perm_r.getRawPtr(), data_.R1.getRawPtr(), data_.C1.getRawPtr());
324 
325  MPI_Bcast( &iinfo, 1, MPI_INT, 0, data_.grid.comm );
326  if ( iinfo == 0 ) {
327  MPI_Bcast( data_.perm_r.getRawPtr(), data_.A.nrow, mpi_itype, 0, data_.grid.comm );
328  if ( job == 5 && data_.options.Equil ) {
329  MPI_Bcast( data_.R1.getRawPtr(), data_.A.nrow, mpi_dtype, 0, data_.grid.comm );
330  MPI_Bcast( data_.C1.getRawPtr(), data_.A.ncol, mpi_dtype, 0, data_.grid.comm );
331  }
332  }
333  } else {
334  MPI_Bcast( &iinfo, 1, mpi_int_t, 0, data_.grid.comm );
335  if ( iinfo == 0 ) {
336  MPI_Bcast( data_.perm_r.getRawPtr(), data_.A.nrow, mpi_itype, 0, data_.grid.comm );
337  if ( job == 5 && data_.options.Equil ) {
338  MPI_Bcast( data_.R1.getRawPtr(), data_.A.nrow, mpi_dtype, 0, data_.grid.comm );
339  MPI_Bcast( data_.C1.getRawPtr(), data_.A.ncol, mpi_dtype, 0, data_.grid.comm );
340  }
341  }
342  }
343  TEUCHOS_TEST_FOR_EXCEPTION( iinfo != 0,
344  std::runtime_error,
345  "SuperLU_DIST pre-ordering failed to compute row perm with "
346  << iinfo << std::endl);
347 
348  if (job == 5)
349  {
350  for (SLUD::int_t i = 0; i < data_.A.nrow; ++i) data_.R1[i] = exp(data_.R1[i]);
351  for (SLUD::int_t i = 0; i < data_.A.ncol; ++i) data_.C1[i] = exp(data_.C1[i]);
352  }
353  }
354 
355 
356  template<class Matrix, class Vector>
357  int
359  {
360  if (data_.options.RowPerm == SLUD::NOROWPERM) {
361  SLUD::int_t slu_rows_ub = Teuchos::as<SLUD::int_t>(this->globalNumRows_);
362  for( SLUD::int_t i = 0; i < slu_rows_ub; ++i ) data_.perm_r[i] = i;
363  }
364  else if (data_.options.RowPerm == SLUD::LargeDiag_MC64) {
365  if (!force_symbfact_)
366  // defer to numerical factorization because row permutation requires the matrix values
367  return (EXIT_SUCCESS + 1);
368  }
369  // loadA_impl(); // Refresh matrix values
370 
371  if( in_grid_ ){
372  // If this function has been called at least once, then the
373  // sizes, and fstVtxSep arrays were allocated in
374  // get_perm_c_parmetis. Delete them before calling that
375  // function again. These arrays will also be dealloc'd in the
376  // deconstructor.
377  if( this->status_.getNumPreOrder() > 0 ){
378 #if defined(AMESOS2_ENABLES_SUPERLUDIST_VERSION5_AND_HIGHER)
379  SUPERLU_FREE( data_.sizes );
380  SUPERLU_FREE( data_.fstVtxSep );
381 #else
382  free( data_.sizes );
383  free( data_.fstVtxSep );
384 #endif
385  }
386  float info = 0.0;
387  {
388 #ifdef HAVE_AMESOS2_TIMERS
389  Teuchos::TimeMonitor preOrderTime( this->timers_.preOrderTime_ );
390 #endif
391  info = SLUD::get_perm_c_parmetis( &(data_.A),
392  data_.perm_r.getRawPtr(), data_.perm_c.getRawPtr(),
393  data_.grid.nprow * data_.grid.npcol, data_.domains,
394  &(data_.sizes), &(data_.fstVtxSep),
395  &(data_.grid), &(data_.symb_comm) );
396  }
397  TEUCHOS_TEST_FOR_EXCEPTION( info > 0.0,
398  std::runtime_error,
399  "SuperLU_DIST pre-ordering ran out of memory after allocating "
400  << info << " bytes of memory" );
401  }
402 
403  // Ordering will be applied directly before numeric factorization,
404  // after we have a chance to get updated coefficients from the
405  // matrix
406 
407  return EXIT_SUCCESS;
408  }
409 
410 
411 
412  template <class Matrix, class Vector>
413  int
415  {
416  // loadA_impl(); // Refresh matrix values
417  if (!force_symbfact_) {
418  if (data_.options.RowPerm == SLUD::LargeDiag_MC64) {
419  // defer to numerical factorization because row permutation requires the matrix values
420  return (EXIT_SUCCESS + 1);
421  }
422  }
423 
424  if( in_grid_ ){
425 
426  float info = 0.0;
427  {
428 #ifdef HAVE_AMESOS2_TIMERS
429  Teuchos::TimeMonitor symFactTime( this->timers_.symFactTime_ );
430 #endif
431 
432 #if (SUPERLU_DIST_MAJOR_VERSION > 7)
433  info = SLUD::symbfact_dist(&(data_.options), (data_.grid.nprow) * (data_.grid.npcol),
434  data_.domains, &(data_.A), data_.perm_c.getRawPtr(),
435  data_.perm_r.getRawPtr(), data_.sizes,
436  data_.fstVtxSep, &(data_.pslu_freeable),
437  &(data_.grid.comm), &(data_.symb_comm),
438  &(data_.mem_usage));
439 
440 #else
441  info = SLUD::symbfact_dist((data_.grid.nprow) * (data_.grid.npcol),
442  data_.domains, &(data_.A), data_.perm_c.getRawPtr(),
443  data_.perm_r.getRawPtr(), data_.sizes,
444  data_.fstVtxSep, &(data_.pslu_freeable),
445  &(data_.grid.comm), &(data_.symb_comm),
446  &(data_.mem_usage));
447 #endif
448  }
449  TEUCHOS_TEST_FOR_EXCEPTION( info > 0.0,
450  std::runtime_error,
451  "SuperLU_DIST symbolic factorization ran out of memory after"
452  " allocating " << info << " bytes of memory" );
453  }
454  same_symbolic_ = false;
455  same_solve_struct_ = false;
456 
457  return EXIT_SUCCESS;
458  }
459 
460 
461  template <class Matrix, class Vector>
462  int
464  using Teuchos::as;
465 
466  // loadA_impl(); // Refresh the matrix values
467  SLUD::SuperMatrix GA; /* Global A in NC format */
468  bool need_value = false;
469 
470  if( in_grid_ ) {
471  if( data_.options.Equil == SLUD::YES ) {
472  SLUD::int_t info = 0;
473 
474  // Compute scaling
475  data_.R.resize(this->globalNumRows_);
476  data_.C.resize(this->globalNumCols_);
477  function_map::gsequ_loc(&(data_.A), data_.R.getRawPtr(), data_.C.getRawPtr(),
478  &(data_.rowcnd), &(data_.colcnd), &(data_.amax), &info, &(data_.grid));
479 
480  // Apply the scalings
481  function_map::laqgs_loc(&(data_.A), data_.R.getRawPtr(), data_.C.getRawPtr(),
482  data_.rowcnd, data_.colcnd, data_.amax,
483  &(data_.equed));
484 
485  data_.rowequ = (data_.equed == SLUD::ROW) || (data_.equed == SLUD::BOTH);
486  data_.colequ = (data_.equed == SLUD::COL) || (data_.equed == SLUD::BOTH);
487 
488  // Compute and apply the row permutation
489  if (data_.options.RowPerm == SLUD::LargeDiag_MC64) {
490  // Create a column-order copy of A
491  need_value = true;
492  SLUD::D::pdCompRow_loc_to_CompCol_global(true, &data_.A, &data_.grid, &GA);
493 
494  // Compute row permutation
495  computeRowPermutationLargeDiagMC64(GA);
496 
497  // Here we do symbolic factorization
498  force_symbfact_ = true;
499  preOrdering_impl();
500  symbolicFactorization_impl();
501  force_symbfact_ = false;
502 
503  // Apply row-permutation scaling for job=5
504  // Here we do it manually to bypass the threshold check in laqgs_loc
505  if (data_.largediag_mc64_job == 5)
506  {
507  SLUD::NRformat_loc *Astore = (SLUD::NRformat_loc*) data_.A.Store;
508  slu_type *a = (slu_type*) Astore->nzval;
509  SLUD::int_t m_loc = Astore->m_loc;
510  SLUD::int_t fst_row = Astore->fst_row;
511  SLUD::int_t i, j, irow = fst_row, icol;
512 
513  /* Scale the distributed matrix further.
514  A <-- diag(R1)*A*diag(C1) */
515  SLUD::slu_dist_mult<slu_type, magnitude_type> mult_op;
516  for (j = 0; j < m_loc; ++j) {
517  for (i = rowptr_view_.data()[j]; i < rowptr_view_.data()[j+1]; ++i) {
518  icol = colind_view_.data()[i];
519  a[i] = mult_op(a[i], data_.R1[irow] * data_.C1[icol]);
520  }
521  ++irow;
522  }
523 
524  /* Multiply together the scaling factors */
525  if ( data_.rowequ ) for (i = 0; i < data_.A.nrow; ++i) data_.R[i] *= data_.R1[i];
526  else for (i = 0; i < data_.A.nrow; ++i) data_.R[i] = data_.R1[i];
527  if ( data_.colequ ) for (i = 0; i < data_.A.ncol; ++i) data_.C[i] *= data_.C1[i];
528  else for (i = 0; i < data_.A.ncol; ++i) data_.C[i] = data_.C1[i];
529 
530  data_.rowequ = data_.colequ = 1;
531  }
532  }
533  }
534 
535  // Apply the column ordering, so that AC is the column-permuted A, and compute etree
536  size_t nnz_loc = ((SLUD::NRformat_loc*)data_.A.Store)->nnz_loc;
537  for( size_t i = 0; i < nnz_loc; ++i ) colind_view_(i) = data_.perm_c[colind_view_(i)];
538 
539  // Distribute data from the symbolic factorization
540  if( same_symbolic_ ){
541  // Note: with the SamePattern_SameRowPerm options, it does not
542  // matter that the glu_freeable member has never been
543  // initialized, because it is never accessed. It is a
544  // placeholder arg. The real work is done in data_.lu
545 #if (SUPERLU_DIST_MAJOR_VERSION > 7)
546  data_.options.Fact = SLUD::SamePattern_SameRowPerm;
547  function_map::pdistribute(&(data_.options),
548  as<SLUD::int_t>(this->globalNumRows_), // aka "n"
549  &(data_.A), &(data_.scale_perm),
550  &(data_.glu_freeable), &(data_.lu),
551  &(data_.grid));
552 #else
553  function_map::pdistribute(SLUD::SamePattern_SameRowPerm,
554  as<SLUD::int_t>(this->globalNumRows_), // aka "n"
555  &(data_.A), &(data_.scale_perm),
556  &(data_.glu_freeable), &(data_.lu),
557  &(data_.grid));
558 #endif
559  } else {
560 #if (SUPERLU_DIST_MAJOR_VERSION > 7)
561  data_.options.Fact = SLUD::DOFACT;
562  function_map::dist_psymbtonum(&(data_.options),
563  as<SLUD::int_t>(this->globalNumRows_), // aka "n"
564  &(data_.A), &(data_.scale_perm),
565  &(data_.pslu_freeable), &(data_.lu),
566  &(data_.grid));
567 #else
568  function_map::dist_psymbtonum(SLUD::DOFACT,
569  as<SLUD::int_t>(this->globalNumRows_), // aka "n"
570  &(data_.A), &(data_.scale_perm),
571  &(data_.pslu_freeable), &(data_.lu),
572  &(data_.grid));
573 #endif
574  }
575 
576  // Retrieve the normI of A (required by gstrf).
577  bool notran = (data_.options.Trans == SLUD::NOTRANS);
578  magnitude_type anorm = function_map::plangs((notran ? (char *)"1" : (char *)"I"), &(data_.A), &(data_.grid));
579 
580  int info = 0;
581  {
582 #ifdef HAVE_AMESOS2_TIMERS
583  Teuchos::TimeMonitor numFactTimer(this->timers_.numFactTime_);
584 #endif
585  function_map::gstrf(&(data_.options), this->globalNumRows_,
586  this->globalNumCols_, anorm, &(data_.lu),
587  &(data_.grid), &(data_.stat), &info);
588  }
589 
590  // Check output
591  TEUCHOS_TEST_FOR_EXCEPTION( info > 0,
592  std::runtime_error,
593  "L and U factors have been computed but U("
594  << info << "," << info << ") is exactly zero "
595  "(i.e. U is singular)");
596  }
597 
598  if (need_value)
599  SLUD::Destroy_CompCol_Matrix_dist(&GA);
600 
601  // The other option, that info_st < 0, denotes invalid parameters
602  // to the function, but we'll assume for now that that won't
603  // happen.
604 
605  data_.options.Fact = SLUD::FACTORED;
606  same_symbolic_ = true;
607 
608  return EXIT_SUCCESS;
609  }
610 
611 
612  template <class Matrix, class Vector>
613  int
615  const Teuchos::Ptr<const MultiVecAdapter<Vector> > B) const
616  {
617  using Teuchos::as;
618 
619  // local_len_rhs is how many of the multivector rows belong to
620  // this processor in the SuperLU_DIST processor grid.
621  const size_t local_len_rhs = superlu_rowmap_->getLocalNumElements();
622  const global_size_type nrhs = X->getGlobalNumVectors();
623  const global_ordinal_type first_global_row_b = superlu_rowmap_->getMinGlobalIndex();
624 
625  // make sure our multivector storage is sized appropriately
626  bvals_.resize(nrhs * local_len_rhs);
627  xvals_.resize(nrhs * local_len_rhs);
628 
629  // We assume the global length of the two vectors have already been
630  // checked for compatibility
631 
632  { // get the values from B
633 #ifdef HAVE_AMESOS2_TIMERS
634  Teuchos::TimeMonitor convTimer(this->timers_.vecConvTime_);
635 #endif
636  {
637  // The input dense matrix for B should be distributed in the
638  // same manner as the superlu_dist matrix. That is, if a
639  // processor has m_loc rows of A, then it should also have
640  // m_loc rows of B (and the same rows). We accomplish this by
641  // distributing the multivector rows with the same Map that
642  // the matrix A's rows are distributed.
643 #ifdef HAVE_AMESOS2_TIMERS
644  Teuchos::TimeMonitor redistTimer(this->timers_.vecRedistTime_);
645 #endif
646  // get grid-distributed mv data. The multivector data will be
647  // distributed across the processes in the SuperLU_DIST grid.
648  typedef Util::get_1d_copy_helper<MultiVecAdapter<Vector>,slu_type> copy_helper;
649  copy_helper::do_get(B,
650  bvals_(),
651  local_len_rhs,
652  Teuchos::ptrInArg(*superlu_rowmap_));
653  }
654  } // end block for conversion time
655 
656  if( in_grid_ ){
657  // if( data_.options.trans == SLUD::NOTRANS ){
658  // if( data_.rowequ ){ // row equilibration has been done on AC
659  // // scale bxvals_ by diag(R)
660  // Util::scale(bxvals_(), as<size_t>(len_rhs), ldbx_, data_.R(),
661  // SLUD::slu_mt_mult<slu_type,magnitude_type>());
662  // }
663  // } else if( data_.colequ ){ // column equilibration has been done on AC
664  // // scale bxvals_ by diag(C)
665  // Util::scale(bxvals_(), as<size_t>(len_rhs), ldbx_, data_.C(),
666  // SLUD::slu_mt_mult<slu_type,magnitude_type>());
667  // }
668 
669  // Initialize the SOLVEstruct_t.
670  //
671  // We are able to reuse the solve struct if we have not changed
672  // the sparsity pattern of L and U since the last solve
673  if( !same_solve_struct_ ){
674  if( data_.options.SolveInitialized == SLUD::YES ){
675  function_map::SolveFinalize(&(data_.options), &(data_.solve_struct));
676  }
677  function_map::SolveInit(&(data_.options), &(data_.A), data_.perm_r.getRawPtr(),
678  data_.perm_c.getRawPtr(), as<SLUD::int_t>(nrhs), &(data_.lu),
679  &(data_.grid), &(data_.solve_struct));
680  // Flag that we can reuse this solve_struct unless another
681  // symbolicFactorization is called between here and the next
682  // solve.
683  same_solve_struct_ = true;
684  }
685 
686  // Apply row-scaling if requested
687  if (data_.options.Equil == SLUD::YES && data_.rowequ) {
688  SLUD::int_t ld = as<SLUD::int_t>(local_len_rhs);
689  SLUD::slu_dist_mult<slu_type, magnitude_type> mult_op;
690  for(global_size_type j = 0; j < nrhs; ++j) {
691  for(size_t i = 0; i < local_len_rhs; ++i) {
692  bvals_[i + j*ld] = mult_op(bvals_[i + j*ld], data_.R[first_global_row_b + i]);
693  }
694  }
695  }
696 
697  // Solve
698  int ierr = 0; // returned error code
699  {
700 #ifdef HAVE_AMESOS2_TIMERS
701  Teuchos::TimeMonitor solveTimer(this->timers_.solveTime_);
702 #endif
703 
704 #if (SUPERLU_DIST_MAJOR_VERSION > 7)
705  function_map::gstrs(&(data_.options), as<SLUD::int_t>(this->globalNumRows_), &(data_.lu),
706  &(data_.scale_perm), &(data_.grid), bvals_.getRawPtr(),
707  as<SLUD::int_t>(local_len_rhs), as<SLUD::int_t>(first_global_row_b),
708  as<SLUD::int_t>(local_len_rhs), as<int>(nrhs),
709  &(data_.solve_struct), &(data_.stat), &ierr);
710 #else
711  function_map::gstrs(as<SLUD::int_t>(this->globalNumRows_), &(data_.lu),
712  &(data_.scale_perm), &(data_.grid), bvals_.getRawPtr(),
713  as<SLUD::int_t>(local_len_rhs), as<SLUD::int_t>(first_global_row_b),
714  as<SLUD::int_t>(local_len_rhs), as<int>(nrhs),
715  &(data_.solve_struct), &(data_.stat), &ierr);
716 #endif
717  } // end block for solve time
718 
719  TEUCHOS_TEST_FOR_EXCEPTION( ierr < 0,
720  std::runtime_error,
721  "Argument " << -ierr << " to gstrs had an illegal value" );
722 
723  // "Un-scale" the solution so that it is a solution of the original system
724  // if( data_.options.trans == SLUD::NOTRANS ){
725  // if( data_.colequ ){ // column equilibration has been done on AC
726  // // scale bxvals_ by diag(C)
727  // Util::scale(bxvals_(), as<size_t>(len_rhs), ldbx_, data_.C(),
728  // SLUD::slu_mt_mult<slu_type,magnitude_type>());
729  // }
730  // } else if( data_.rowequ ){ // row equilibration has been done on AC
731  // // scale bxvals_ by diag(R)
732  // Util::scale(bxvals_(), as<size_t>(len_rhs), ldbx_, data_.R(),
733  // SLUD::slu_mt_mult<slu_type,magnitude_type>());
734  // }
735  { // permute B to a solution of the original system
736 #ifdef HAVE_AMESOS2_TIMERS
737  Teuchos::TimeMonitor redistTimer(this->timers_.vecRedistTime_);
738 #endif
739  SLUD::int_t ld = as<SLUD::int_t>(local_len_rhs);
740  function_map::permute_Dense_Matrix(as<SLUD::int_t>(first_global_row_b),
741  as<SLUD::int_t>(local_len_rhs),
742  data_.solve_struct.row_to_proc,
743  data_.solve_struct.inv_perm_c,
744  bvals_.getRawPtr(), ld,
745  xvals_.getRawPtr(), ld,
746  as<int>(nrhs),
747  &(data_.grid));
748  }
749 
750  // Apply col-scaling if requested
751  if (data_.options.Equil == SLUD::YES && data_.colequ) {
752  SLUD::int_t ld = as<SLUD::int_t>(local_len_rhs);
753  SLUD::slu_dist_mult<slu_type, magnitude_type> mult_op;
754  for(global_size_type j = 0; j < nrhs; ++j) {
755  for(size_t i = 0; i < local_len_rhs; ++i) {
756  xvals_[i + j*ld] = mult_op(xvals_[i + j*ld], data_.C[first_global_row_b + i]);
757  }
758  }
759  }
760  }
761 
762  /* Update X's global values */
763  {
764 #ifdef HAVE_AMESOS2_TIMERS
765  Teuchos::TimeMonitor redistTimer(this->timers_.vecRedistTime_);
766 #endif
767  typedef Util::put_1d_data_helper<MultiVecAdapter<Vector>,slu_type> put_helper;
768  put_helper::do_put(X,
769  xvals_(),
770  local_len_rhs,
771  Teuchos::ptrInArg(*superlu_rowmap_));
772  }
773 
774  return EXIT_SUCCESS;
775  }
776 
777 
778  template <class Matrix, class Vector>
779  bool
781  {
782  // SuperLU_DIST requires square matrices
783  return( this->globalNumRows_ == this->globalNumCols_ );
784  }
785 
786 
787  template <class Matrix, class Vector>
788  void
789  Superludist<Matrix,Vector>::setParameters_impl(const Teuchos::RCP<Teuchos::ParameterList> & parameterList )
790  {
791  using Teuchos::as;
792  using Teuchos::RCP;
793  using Teuchos::getIntegralValue;
794  using Teuchos::ParameterEntryValidator;
795 
796  RCP<const Teuchos::ParameterList> valid_params = getValidParameters_impl();
797 
798  if( parameterList->isParameter("npcol") || parameterList->isParameter("nprow") ){
799  TEUCHOS_TEST_FOR_EXCEPTION( !(parameterList->isParameter("nprow") &&
800  parameterList->isParameter("npcol")),
801  std::invalid_argument,
802  "nprow and npcol must be set together" );
803 
804  SLUD::int_t nprow = parameterList->template get<SLUD::int_t>("nprow");
805  SLUD::int_t npcol = parameterList->template get<SLUD::int_t>("npcol");
806 
807  TEUCHOS_TEST_FOR_EXCEPTION( nprow * npcol > this->getComm()->getSize(),
808  std::invalid_argument,
809  "nprow and npcol combination invalid" );
810 
811  if( (npcol != data_.grid.npcol) || (nprow != data_.grid.nprow) ){
812  // De-allocate the default grid that was initialized in the constructor
813  SLUD::superlu_gridexit(&(data_.grid));
814  // Create a new grid
815  SLUD::superlu_gridinit(data_.mat_comm, nprow, npcol, &(data_.grid));
816  } // else our grid has not changed size since the last initialization
817  }
818 
819  TEUCHOS_TEST_FOR_EXCEPTION( this->control_.useTranspose_,
820  std::invalid_argument,
821  "SuperLU_DIST does not support solving the tranpose system" );
822 
823  data_.options.Trans = SLUD::NOTRANS; // should always be set this way;
824 
825  // Equilbration option
826  bool equil = parameterList->get<bool>("Equil", false);
827  data_.options.Equil = equil ? SLUD::YES : SLUD::NO;
828 
829  if( parameterList->isParameter("RowPerm") ){
830  RCP<const ParameterEntryValidator> rowperm_validator = valid_params->getEntry("RowPerm").validator();
831  parameterList->getEntry("RowPerm").setValidator(rowperm_validator);
832 
833  data_.options.RowPerm = getIntegralValue<SLUD::rowperm_t>(*parameterList, "RowPerm");
834  }
835 
836  if( parameterList->isParameter("LargeDiag_MC64-Options") ){
837  data_.largediag_mc64_job = parameterList->template get<int>("LargeDiag_MC64-Options");
838  }
839 
840  if( parameterList->isParameter("ColPerm") ){
841  RCP<const ParameterEntryValidator> colperm_validator = valid_params->getEntry("ColPerm").validator();
842  parameterList->getEntry("ColPerm").setValidator(colperm_validator);
843 
844  data_.options.ColPerm = getIntegralValue<SLUD::colperm_t>(*parameterList, "ColPerm");
845  }
846 
847  // TODO: Uncomment when supported
848  // if( parameterList->isParameter("IterRefine") ){
849  // RCP<const ParameterEntryValidator> iter_refine_validator = valid_params->getEntry("IterRefine").validator();
850  // parameterList->getEntry("IterRefine").setValidator(iter_refine_validator);
851  // data_.options.IterRefine = getIntegralValue<SLUD::IterRefine_t>(*parameterList, "IterRefine");
852  // }
853  data_.options.IterRefine = SLUD::NOREFINE;
854 
855  bool replace_tiny = parameterList->get<bool>("ReplaceTinyPivot", true);
856  data_.options.ReplaceTinyPivot = replace_tiny ? SLUD::YES : SLUD::NO;
857 
858  if( parameterList->isParameter("IsContiguous") ){
859  is_contiguous_ = parameterList->get<bool>("IsContiguous");
860  }
861  }
862 
863 
864  template <class Matrix, class Vector>
865  Teuchos::RCP<const Teuchos::ParameterList>
867  {
868  using std::string;
869  using Teuchos::tuple;
870  using Teuchos::ParameterList;
871  using Teuchos::EnhancedNumberValidator;
872  using Teuchos::setStringToIntegralParameter;
873  using Teuchos::setIntParameter;
874  using Teuchos::stringToIntegralParameterEntryValidator;
875 
876  static Teuchos::RCP<const Teuchos::ParameterList> valid_params;
877 
878  if( is_null(valid_params) ){
879  Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
880 
881  Teuchos::RCP<EnhancedNumberValidator<SLUD::int_t> > col_row_validator
882  = Teuchos::rcp( new EnhancedNumberValidator<SLUD::int_t>() );
883  col_row_validator->setMin(1);
884 
885  pl->set("npcol", data_.grid.npcol,
886  "Number of columns in the processor grid. "
887  "Must be set with nprow", col_row_validator);
888  pl->set("nprow", data_.grid.nprow,
889  "Number of rows in the SuperLU_DIST processor grid. "
890  "Must be set together with npcol", col_row_validator);
891 
892  // validator will catch any value besides NOTRANS
893  setStringToIntegralParameter<SLUD::trans_t>("Trans", "NOTRANS",
894  "Solve for the transpose system or not",
895  tuple<string>("NOTRANS"),
896  tuple<string>("Do not solve with transpose"),
897  tuple<SLUD::trans_t>(SLUD::NOTRANS),
898  pl.getRawPtr());
899 
900  // Equillbration
901  pl->set("Equil", false, "Whether to equilibrate the system before solve");
902 
903  // TODO: uncomment when supported
904  // setStringToIntegralParameter<SLUD::IterRefine_t>("IterRefine", "NOREFINE",
905  // "Type of iterative refinement to use",
906  // tuple<string>("NOREFINE", "DOUBLE"),
907  // tuple<string>("Do not use iterative refinement",
908  // "Do double iterative refinement"),
909  // tuple<SLUD::IterRefine_t>(SLUD::NOREFINE,
910  // SLUD::DOUBLE),
911  // pl.getRawPtr());
912 
913  // Tiny pivot handling
914  pl->set("ReplaceTinyPivot", true,
915  "Specifies whether to replace tiny diagonals during LU factorization");
916 
917  // Row permutation
918  setStringToIntegralParameter<SLUD::rowperm_t>("RowPerm", "NOROWPERM",
919  "Specifies how to permute the rows of the "
920  "matrix for sparsity preservation",
921  tuple<string>("NOROWPERM", "LargeDiag_MC64"),
922  tuple<string>("Natural ordering",
923  "Duff/Koster algorithm"),
924  tuple<SLUD::rowperm_t>(SLUD::NOROWPERM,
925  SLUD::LargeDiag_MC64),
926  pl.getRawPtr());
927 
928  setIntParameter("LargeDiag_MC64-Options", 4, "Options for RowPerm-LargeDiag_MC64", pl.getRawPtr());
929 
930  // Column permutation
931  setStringToIntegralParameter<SLUD::colperm_t>("ColPerm", "PARMETIS",
932  "Specifies how to permute the columns of the "
933  "matrix for sparsity preservation",
934  tuple<string>("NATURAL", "PARMETIS"),
935  tuple<string>("Natural ordering",
936  "ParMETIS ordering on A^T + A"),
937  tuple<SLUD::colperm_t>(SLUD::NATURAL,
938  SLUD::PARMETIS),
939  pl.getRawPtr());
940 
941  pl->set("IsContiguous", true, "Whether GIDs contiguous");
942 
943  valid_params = pl;
944  }
945 
946  return valid_params;
947  }
948 
949 
950  template <class Matrix, class Vector>
951  void
953  SLUD::int_t& nprow,
954  SLUD::int_t& npcol) const {
955  TEUCHOS_TEST_FOR_EXCEPTION( nprocs < 1,
956  std::invalid_argument,
957  "Number of MPI processes must be at least 1" );
958  SLUD::int_t c, r = 1;
959  while( r*r <= nprocs ) r++;
960  nprow = npcol = --r; // fall back to square grid
961  c = nprocs / r;
962  while( (r--)*c != nprocs ){
963  c = nprocs / r; // note integer division
964  }
965  ++r;
966  // prefer the square grid over a single row (which will only happen
967  // in the case of a prime nprocs
968  if( r > 1 || nprocs < 9){ // nprocs < 9 is a heuristic for the small cases
969  nprow = r;
970  npcol = c;
971  }
972  }
973 
974 
975  template <class Matrix, class Vector>
976  bool
978  // Extract the necessary information from mat and call SLU function
979  using Teuchos::Array;
980  using Teuchos::ArrayView;
981  using Teuchos::ptrInArg;
982  using Teuchos::as;
983 
984  using SLUD::int_t;
985 
986 #ifdef HAVE_AMESOS2_TIMERS
987  Teuchos::TimeMonitor convTimer(this->timers_.mtxConvTime_);
988 #endif
989 
990  // Cleanup old store memory if it's non-NULL
991  if( data_.A.Store != NULL ){
992  SLUD::Destroy_SuperMatrix_Store_dist( &(data_.A) );
993  data_.A.Store = NULL;
994  }
995 
996  Teuchos::RCP<const MatrixAdapter<Matrix> > redist_mat
997  = this->matrixA_->get(ptrInArg(*superlu_rowmap_));
998 
999  int_t l_nnz, l_rows, g_rows, g_cols, fst_global_row;
1000  l_nnz = as<int_t>(redist_mat->getLocalNNZ());
1001  l_rows = as<int_t>(redist_mat->getLocalNumRows());
1002  g_rows = as<int_t>(redist_mat->getGlobalNumRows());
1003  g_cols = g_rows; // we deal with square matrices
1004  fst_global_row = as<int_t>(superlu_rowmap_->getMinGlobalIndex());
1005 
1006  Kokkos::resize(nzvals_view_, l_nnz);
1007  Kokkos::resize(colind_view_, l_nnz);
1008  Kokkos::resize(rowptr_view_, l_rows + 1);
1009  int_t nnz_ret = 0;
1010  {
1011 #ifdef HAVE_AMESOS2_TIMERS
1012  Teuchos::TimeMonitor mtxRedistTimer( this->timers_.mtxRedistTime_ );
1013 #endif
1014 
1016  host_value_type_array,host_ordinal_type_array, host_size_type_array >::do_get(
1017  redist_mat.ptr(),
1018  nzvals_view_, colind_view_, rowptr_view_,
1019  nnz_ret,
1020  ptrInArg(*superlu_rowmap_),
1021  ROOTED,
1022  ARBITRARY);
1023  }
1024 
1025  TEUCHOS_TEST_FOR_EXCEPTION( nnz_ret != l_nnz,
1026  std::runtime_error,
1027  "Did not get the expected number of non-zero vals");
1028 
1029  // Get the SLU data type for this type of matrix
1030  SLUD::Dtype_t dtype = type_map::dtype;
1031 
1032  if( in_grid_ ){
1033  function_map::create_CompRowLoc_Matrix(&(data_.A),
1034  g_rows, g_cols,
1035  l_nnz, l_rows, fst_global_row,
1036  nzvals_view_.data(),
1037  colind_view_.data(),
1038  rowptr_view_.data(),
1039  SLUD::SLU_NR_loc,
1040  dtype, SLUD::SLU_GE);
1041  }
1042 
1043  return true;
1044 }
1045 
1046 
1047  template<class Matrix, class Vector>
1048  const char* Superludist<Matrix,Vector>::name = "SuperLU_DIST";
1049 
1050 
1051 } // end namespace Amesos2
1052 
1053 #endif // AMESOS2_SUPERLUDIST_DEF_HPP
Teuchos::RCP< const Teuchos::ParameterList > getValidParameters() const override
Return a const parameter list of all of the valid parameters that this-&gt;setParameterList(...) will accept.
Definition: Amesos2_SolverCore_def.hpp:537
Amesos2::SolverCore: A templated interface for interaction with third-party direct sparse solvers...
Definition: Amesos2_SolverCore_decl.hpp:71
void computeRowPermutationLargeDiagMC64(SLUD::SuperMatrix &GA)
Compute the row permutation for option LargeDiag-MC64.
Definition: Amesos2_Superludist_def.hpp:303
Amesos2 interface to the distributed memory version of SuperLU.
Definition: Amesos2_Superludist_decl.hpp:56
EPhase
Used to indicate a phase in the direct solution.
Definition: Amesos2_TypeDecl.hpp:31
global_size_type globalNumCols_
Number of global columns in matrixA_.
Definition: Amesos2_SolverCore_decl.hpp:445
super_type & setParameters(const Teuchos::RCP< Teuchos::ParameterList > &parameterList) override
Set/update internal variables and solver options.
Definition: Amesos2_SolverCore_def.hpp:505
Superludist(Teuchos::RCP< const Matrix > A, Teuchos::RCP< Vector > X, Teuchos::RCP< const Vector > B)
Initialize from Teuchos::RCP.
Definition: Amesos2_Superludist_def.hpp:35
void setParameters_impl(const Teuchos::RCP< Teuchos::ParameterList > &parameterList)
Definition: Amesos2_Superludist_def.hpp:789
global_size_type globalNumRows_
Number of global rows in matrixA_.
Definition: Amesos2_SolverCore_decl.hpp:442
Helper class for getting 1-D copies of multivectors.
Definition: Amesos2_MultiVecAdapter_decl.hpp:233
Utility functions for Amesos2.
Teuchos::RCP< const Teuchos::Comm< int > > getComm() const override
Returns a pointer to the Teuchos::Comm communicator with this operator.
Definition: Amesos2_SolverCore_decl.hpp:329
Teuchos::RCP< const Teuchos::ParameterList > getValidParameters_impl() const
Definition: Amesos2_Superludist_def.hpp:866
Provides definition of SuperLU_DIST types as well as conversions and type traits. ...
int preOrdering_impl()
Performs pre-ordering on the matrix to increase efficiency.
Definition: Amesos2_Superludist_def.hpp:358
Similar to get_ccs_helper , but used to get a CRS representation of the given matrix.
Definition: Amesos2_Util.hpp:625
bool matrixShapeOK_impl() const
Determines whether the shape of the matrix is OK for this solver.
Definition: Amesos2_Superludist_def.hpp:780
Teuchos::RCP< const Tpetra::Map< local_ordinal_type, global_ordinal_type, node_type > > superlu_rowmap_
Maps rows of the matrix to processors in the SuperLU_DIST processor grid.
Definition: Amesos2_Superludist_decl.hpp:309
~Superludist()
Destructor.
Definition: Amesos2_Superludist_def.hpp:208
int symbolicFactorization_impl()
Perform symbolic factorization of the matrix using SuperLU_DIST.
Definition: Amesos2_Superludist_def.hpp:414
void get_default_grid_size(int nprocs, SLUD::int_t &nprow, SLUD::int_t &npcol) const
Definition: Amesos2_Superludist_def.hpp:952
bool in_grid_
true if this processor is in SuperLU_DISTS&#39;s 2D process grid
Definition: Amesos2_Superludist_decl.hpp:301
Helper class for putting 1-D data arrays into multivectors.
Definition: Amesos2_MultiVecAdapter_decl.hpp:339
int solve_impl(const Teuchos::Ptr< MultiVecAdapter< Vector > > X, const Teuchos::Ptr< const MultiVecAdapter< Vector > > B) const
SuperLU_DIST specific solve.
Definition: Amesos2_Superludist_def.hpp:614
A templated MultiVector class adapter for Amesos2.
Definition: Amesos2_MultiVecAdapter_decl.hpp:142
bool loadA_impl(EPhase current_phase)
Reads matrix data into internal solver structures.
Definition: Amesos2_Superludist_def.hpp:977
Teuchos::RCP< const MatrixAdapter< Matrix > > matrixA_
The LHS operator.
Definition: Amesos2_SolverCore_decl.hpp:421
int numericFactorization_impl()
SuperLU_DIST specific numeric factorization.
Definition: Amesos2_Superludist_def.hpp:463