Amesos
Development
|
Amesos_Klu: A serial, unblocked code ideal for getting started and for very sparse matrices, such as circuit matrces. More...
#include <Amesos_Umfpack.h>
Public Member Functions | |
Amesos_Klu (const Epetra_LinearProblem &LinearProblem) | |
Amesos_Klu Constructor. More... | |
~Amesos_Klu (void) | |
Amesos_Klu Destructor. | |
int | SymbolicFactorization () |
Performs SymbolicFactorization on the matrix A. More... | |
int | NumericFactorization () |
Performs NumericFactorization on the matrix A. More... | |
int | Solve () |
Solves A X = B (or AT x = B) More... | |
const Epetra_LinearProblem * | GetProblem () const |
Get a pointer to the Problem. | |
bool | MatrixShapeOK () const |
Returns true if KLU can handle this matrix shape. More... | |
int | SetUseTranspose (bool UseTranspose_in) |
SetUseTranpose(true) is more efficient in Amesos_Klu. More... | |
bool | UseTranspose () const |
Returns the current UseTranspose setting. | |
const Epetra_Comm & | Comm () const |
Returns a pointer to the Epetra_Comm communicator associated with this operator. | |
int | SetParameters (Teuchos::ParameterList &ParameterList) |
Updates internal variables. More... | |
int | NumSymbolicFact () const |
Returns the number of symbolic factorizations performed by this object. | |
int | NumNumericFact () const |
Returns the number of numeric factorizations performed by this object. | |
int | NumSolve () const |
Returns the number of solves performed by this object. | |
void | PrintTiming () const |
Prints timing information. | |
void | PrintStatus () const |
Prints information about the factorization and solution phases. | |
void | GetTiming (Teuchos::ParameterList &TimingParameterList) const |
Extracts timing information and places in parameter list. | |
Public Member Functions inherited from Amesos_BaseSolver | |
virtual | ~Amesos_BaseSolver () |
Destructor. | |
virtual void | setParameterList (Teuchos::RCP< Teuchos::ParameterList > const ¶mList) |
Redefined from Teuchos::ParameterListAcceptor (Does Not Work) | |
virtual Teuchos::RCP < Teuchos::ParameterList > | getNonconstParameterList () |
This is an empty stub. | |
virtual Teuchos::RCP < Teuchos::ParameterList > | unsetParameterList () |
This is an empty stub. | |
Public Member Functions inherited from Teuchos::ParameterListAcceptor | |
virtual RCP< const ParameterList > | getParameterList () const |
virtual RCP< const ParameterList > | getValidParameters () const |
Amesos_Klu: A serial, unblocked code ideal for getting started and for very sparse matrices, such as circuit matrces.
Interface to UMFPACK.
Interface to KLU internal solver.
Class Amesos_Klu is an object-oriented wrapper for KLU. KLU, whose sources are distributed within Amesos, is a serial solver for sparse matrices. KLU will solve a linear system of equations: , where A
is an Epetra_RowMatrix and X
and B
are Epetra_MultiVector objects.
Amesos_Klu computes more efficiently than . The latter requires a matrix transpose – which costs both time and space.
KLU is Tim Davis' implementation of Gilbert-Peierl's left-looking sparse partial pivoting algorithm, with Eisenstat & Liu's symmetric pruning. Gilbert's version appears as [L,U,P]=lu(A) in MATLAB. It doesn't exploit dense matrix kernels, but it is the only sparse LU factorization algorithm known to be asymptotically optimal, in the sense that it takes time proportional to the number of floating-point operations. It is the precursor to SuperLU, thus the name ("clark Kent LU"). For very sparse matrices that do not suffer much fill-in (such as most circuit matrices when permuted properly) dense matrix kernels do not help, and the asymptotic run-time is of practical importance.
The klu_btf
code first permutes the matrix to upper block triangular form (using two algorithms by Duff and Reid, MC13 and MC21, in the ACM Collected Algorithms). It then permutes each block via a symmetric minimum degree ordering (AMD, by Amestoy, Davis, and Duff). This ordering phase can be done just once for a sequence of matrices. Next, it factorizes each reordered block via the klu routine, which also attempts to preserve diagonal pivoting, but allows for partial pivoting if the diagonal is to small.
Amesos_Klu::Amesos_Klu | ( | const Epetra_LinearProblem & | LinearProblem | ) |
Amesos_Klu Constructor.
Creates an Amesos_Klu instance, using an Epetra_LinearProblem, passing in an already-defined Epetra_LinearProblem object.
Note: The operator in LinearProblem must be an Epetra_RowMatrix.
References rcp(), and SetParameters().
|
virtual |
Returns true if KLU can handle this matrix shape.
Returns true if the matrix shape is one that KLU can handle. KLU only works with square matrices.
Implements Amesos_BaseSolver.
References GetProblem().
|
virtual |
Performs NumericFactorization on the matrix A.
In addition to performing numeric factorization on the matrix A, the call to NumericFactorization() implies that no change will be made to the underlying matrix without a subsequent call to NumericFactorization().
<br >Preconditions:
<br >Postconditions:
Implements Amesos_BaseSolver.
References Amesos_Time::AddTime(), Amesos_Control::AddZeroToDiag_, Epetra_LinearProblem::GetMatrix(), Amesos_Status::IsNumericFactorizationOK_, Amesos_Status::IsSymbolicFactorizationOK_, Amesos_Status::NumNumericFact_, Amesos_Time::ResetTimer(), and SymbolicFactorization().
Referenced by Solve().
|
virtual |
Updates internal variables.
<br \>Preconditions:<ul> <li>None.</li> </ul> <br \>Postconditions:<ul> <li>Internal variables controlling the factorization and solve will be updated and take effect on all subseuent calls to NumericFactorization() and Solve().</li> <li>All parameters whose value are to differ from the default values must
be included in ParameterList. Parameters not specified in ParameterList revert to their default values.
Implements Amesos_BaseSolver.
References Teuchos::ParameterList::get(), Teuchos::ParameterList::isParameter(), Teuchos::ParameterList::isSublist(), and Teuchos::ParameterList::sublist().
Referenced by Amesos_Klu().
|
inlinevirtual |
SetUseTranpose(true) is more efficient in Amesos_Klu.
If SetUseTranspose() is set to true, is computed.
Implements Amesos_BaseSolver.
|
virtual |
Solves A X = B (or AT x = B)
<br >Preconditions:
<br >Postconditions:
Implements Amesos_BaseSolver.
References Amesos_Time::AddTime(), Amesos_Utils::ComputeTrueResidual(), Amesos_Status::ComputeTrueResidual_, Amesos_Utils::ComputeVectorNorms(), Amesos_Status::ComputeVectorNorms_, Epetra_LinearProblem::GetLHS(), Epetra_LinearProblem::GetMatrix(), Epetra_LinearProblem::GetRHS(), Insert, Amesos_Status::IsNumericFactorizationOK_, NumericFactorization(), Amesos_Status::NumSolve_, rcp(), Teuchos::rcp(), Amesos_Control::Reindex_, Amesos_Time::ResetTimer(), and UseTranspose().
|
virtual |
Performs SymbolicFactorization on the matrix A.
In addition to performing symbolic factorization on the matrix A, the call to SymbolicFactorization() implies that no change will be made to the non-zero structure of the underlying matrix without a subsequent call to SymbolicFactorization().
<br >Preconditions:
<br >Postconditions:
Implements Amesos_BaseSolver.
References Amesos_Time::AddTime(), Comm(), Amesos_Time::CreateTimer(), Epetra_LinearProblem::GetLHS(), Epetra_LinearProblem::GetMatrix(), Epetra_LinearProblem::GetRHS(), Amesos_Status::IsNumericFactorizationOK_, Amesos_Status::IsSymbolicFactorizationOK_, Epetra_Comm::MyPID(), Epetra_Comm::NumProc(), Amesos_Status::NumSymbolicFact_, Teuchos::rcp(), Amesos_Control::Reindex_, and Amesos_Time::ResetTimer().
Referenced by NumericFactorization().