Amesos Package Browser (Single Doxygen Collection)
Development
|
Go to the source code of this file.
Macros | |
#define | P_TEMPLATE(name) amesos_p_ ## name |
#define | P_ASSIGN2(x, z, p, ax, az, q) x [p] = 1 |
#define | P_PRINT(k, x, z, p) PRK(k, ("1")) |
#define | R_TEMPLATE(name) amesos_r_ ## name |
#define | R_ASSEMBLE(x, z, p, ax, az, q) x [p] += ax [q] |
#define | R_ASSIGN(x, z, p, ax, az, q) x [p] = ax [q] |
#define | R_ASSIGN_CONJ(x, z, p, ax, az, q) x [p] = ax [q] |
#define | R_ASSIGN_REAL(x, p, ax, q) x [p] = ax [q] |
#define | R_XTYPE_OK(type) ((type) == CHOLMOD_REAL) |
#define | R_IS_NONZERO(ax, az, q) IS_NONZERO (ax [q]) |
#define | R_IS_ZERO(ax, az, q) IS_ZERO (ax [q]) |
#define | R_IS_ONE(ax, az, q) (ax [q] == 1) |
#define | R_MULT(x, z, p, ax, az, q, bx, bz, r) x [p] = ax [q] * bx [r] |
#define | R_MULTADD(x, z, p, ax, az, q, bx, bz, r) x [p] += ax [q] * bx [r] |
#define | R_MULTSUB(x, z, p, ax, az, q, bx, bz, r) x [p] -= ax [q] * bx [r] |
#define | R_MULTADDCONJ(x, z, p, ax, az, q, bx, bz, r) x [p] += ax [q] * bx [r] |
#define | R_MULTSUBCONJ(x, z, p, ax, az, q, bx, bz, r) x [p] -= ax [q] * bx [r] |
#define | R_ADD(x, z, p, ax, az, q, bx, bz, r) x [p] = ax [q] + bx [r] |
#define | R_ADD_REAL(x, p, ax, q, bx, r) x [p] = ax [q] + bx [r] |
#define | R_CLEAR(x, z, p) x [p] = 0 |
#define | R_CLEAR_IMAG(x, z, p) |
#define | R_DIV(x, z, p, ax, az, q) x [p] /= ax [q] |
#define | R_LLDOT(x, p, ax, az, q) x [p] -= ax [q] * ax [q] |
#define | R_PRINT(k, x, z, p) PRK(k, ("%24.16e", x [p])) |
#define | R_DIV_REAL(x, z, p, ax, az, q, bx, r) x [p] = ax [q] / bx [r] |
#define | R_MULT_REAL(x, z, p, ax, az, q, bx, r) x [p] = ax [q] * bx [r] |
#define | R_LDLDOT(x, p, ax, az, q, bx, r) x [p] -=(ax[q] * ax[q])/ bx[r] |
#define | C_TEMPLATE(name) amesos_c_ ## name |
#define | CT_TEMPLATE(name) amesos_ct_ ## name |
#define | C_ASSEMBLE(x, z, p, ax, az, q) |
#define | C_ASSIGN(x, z, p, ax, az, q) |
#define | C_ASSIGN_REAL(x, p, ax, q) x [2*(p)] = ax [2*(q)] |
#define | C_ASSIGN_CONJ(x, z, p, ax, az, q) |
#define | C_XTYPE_OK(type) ((type) == CHOLMOD_COMPLEX) |
#define | C_IS_NONZERO(ax, az, q) (IS_NONZERO (ax [2*(q)]) || IS_NONZERO (ax [2*(q)+1])) |
#define | C_IS_ZERO(ax, az, q) (IS_ZERO (ax [2*(q)]) && IS_ZERO (ax [2*(q)+1])) |
#define | C_IS_ONE(ax, az, q) ((ax [2*(q)] == 1) && IS_ZERO (ax [2*(q)+1])) |
#define | C_IMAG_IS_NONZERO(ax, az, q) (IS_NONZERO (ax [2*(q)+1])) |
#define | C_MULT(x, z, p, ax, az, q, bx, bz, r) |
#define | C_MULTADD(x, z, p, ax, az, q, bx, bz, r) |
#define | C_MULTSUB(x, z, p, ax, az, q, bx, bz, r) |
#define | C_MULTADDCONJ(x, z, p, ax, az, q, bx, bz, r) |
#define | C_MULTSUBCONJ(x, z, p, ax, az, q, bx, bz, r) |
#define | C_ADD(x, z, p, ax, az, q, bx, bz, r) |
#define | C_ADD_REAL(x, p, ax, q, bx, r) x [2*(p)] = ax [2*(q)] + bx [2*(r)] |
#define | C_CLEAR(x, z, p) |
#define | C_CLEAR_IMAG(x, z, p) x [2*(p)+1] = 0 |
#define | C_DIV(x, z, p, ax, az, q) |
#define | C_LLDOT(x, p, ax, az, q) x [2*(p)] -= ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1] |
#define | C_PRINT(k, x, z, p) PRK(k, ("(%24.16e,%24.16e)", x [2*(p)], x [2*(p)+1])) |
#define | C_DIV_REAL(x, z, p, ax, az, q, bx, r) |
#define | C_MULT_REAL(x, z, p, ax, az, q, bx, r) |
#define | C_LDLDOT(x, p, ax, az, q, bx, r) x [2*(p)] -= (ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1]) / bx[r] |
#define | Z_TEMPLATE(name) amesos_z_ ## name |
#define | ZT_TEMPLATE(name) amesos_zt_ ## name |
#define | Z_ASSEMBLE(x, z, p, ax, az, q) |
#define | Z_ASSIGN(x, z, p, ax, az, q) |
#define | Z_ASSIGN_REAL(x, p, ax, q) x [p] = ax [q] |
#define | Z_ASSIGN_CONJ(x, z, p, ax, az, q) |
#define | Z_XTYPE_OK(type) ((type) == CHOLMOD_ZOMPLEX) |
#define | Z_IS_NONZERO(ax, az, q) (IS_NONZERO (ax [q]) || IS_NONZERO (az [q])) |
#define | Z_IS_ZERO(ax, az, q) (IS_ZERO (ax [q]) && IS_ZERO (az [q])) |
#define | Z_IS_ONE(ax, az, q) ((ax [q] == 1) && IS_ZERO (az [q])) |
#define | Z_IMAG_IS_NONZERO(ax, az, q) (IS_NONZERO (az [q])) |
#define | Z_MULT(x, z, p, ax, az, q, bx, bz, r) |
#define | Z_MULTADD(x, z, p, ax, az, q, bx, bz, r) |
#define | Z_MULTSUB(x, z, p, ax, az, q, bx, bz, r) |
#define | Z_MULTADDCONJ(x, z, p, ax, az, q, bx, bz, r) |
#define | Z_MULTSUBCONJ(x, z, p, ax, az, q, bx, bz, r) |
#define | Z_ADD(x, z, p, ax, az, q, bx, bz, r) |
#define | Z_ADD_REAL(x, p, ax, q, bx, r) x [p] = ax [q] + bx [r] |
#define | Z_CLEAR(x, z, p) |
#define | Z_CLEAR_IMAG(x, z, p) z [p] = 0 |
#define | Z_DIV(x, z, p, ax, az, q) Common->complex_divide (x [p], z [p], ax [q], az [q], &x [p], &z [p]) |
#define | Z_LLDOT(x, p, ax, az, q) x [p] -= ax [q] * ax [q] + az [q] * az [q] |
#define | Z_PRINT(k, x, z, p) PRK(k, ("(%24.16e,%24.16e)", x [p], z [p])) |
#define | Z_DIV_REAL(x, z, p, ax, az, q, bx, r) |
#define | Z_MULT_REAL(x, z, p, ax, az, q, bx, r) |
#define | Z_LDLDOT(x, p, ax, az, q, bx, r) x [p] -= (ax [q] * ax [q] + az [q] * az [q]) / bx[r] |
#define | RETURN_IF_XTYPE_INVALID(A, xtype1, xtype2, result) |
#define P_TEMPLATE | ( | name | ) | amesos_p_ ## name |
Definition at line 24 of file amesos_cholmod_complexity.h.
#define P_ASSIGN2 | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) | x [p] = 1 |
Definition at line 25 of file amesos_cholmod_complexity.h.
#define P_PRINT | ( | k, | |
x, | |||
z, | |||
p | |||
) | PRK(k, ("1")) |
Definition at line 26 of file amesos_cholmod_complexity.h.
#define R_TEMPLATE | ( | name | ) | amesos_r_ ## name |
Definition at line 32 of file amesos_cholmod_complexity.h.
#define R_ASSEMBLE | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) | x [p] += ax [q] |
Definition at line 33 of file amesos_cholmod_complexity.h.
#define R_ASSIGN | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) | x [p] = ax [q] |
Definition at line 34 of file amesos_cholmod_complexity.h.
#define R_ASSIGN_CONJ | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) | x [p] = ax [q] |
Definition at line 35 of file amesos_cholmod_complexity.h.
#define R_ASSIGN_REAL | ( | x, | |
p, | |||
ax, | |||
q | |||
) | x [p] = ax [q] |
Definition at line 36 of file amesos_cholmod_complexity.h.
#define R_XTYPE_OK | ( | type | ) | ((type) == CHOLMOD_REAL) |
Definition at line 37 of file amesos_cholmod_complexity.h.
#define R_IS_NONZERO | ( | ax, | |
az, | |||
q | |||
) | IS_NONZERO (ax [q]) |
Definition at line 38 of file amesos_cholmod_complexity.h.
#define R_IS_ZERO | ( | ax, | |
az, | |||
q | |||
) | IS_ZERO (ax [q]) |
Definition at line 39 of file amesos_cholmod_complexity.h.
#define R_IS_ONE | ( | ax, | |
az, | |||
q | |||
) | (ax [q] == 1) |
Definition at line 40 of file amesos_cholmod_complexity.h.
#define R_MULT | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) | x [p] = ax [q] * bx [r] |
Definition at line 41 of file amesos_cholmod_complexity.h.
#define R_MULTADD | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) | x [p] += ax [q] * bx [r] |
Definition at line 42 of file amesos_cholmod_complexity.h.
#define R_MULTSUB | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) | x [p] -= ax [q] * bx [r] |
Definition at line 43 of file amesos_cholmod_complexity.h.
#define R_MULTADDCONJ | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) | x [p] += ax [q] * bx [r] |
Definition at line 44 of file amesos_cholmod_complexity.h.
#define R_MULTSUBCONJ | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) | x [p] -= ax [q] * bx [r] |
Definition at line 45 of file amesos_cholmod_complexity.h.
#define R_ADD | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) | x [p] = ax [q] + bx [r] |
Definition at line 46 of file amesos_cholmod_complexity.h.
#define R_ADD_REAL | ( | x, | |
p, | |||
ax, | |||
q, | |||
bx, | |||
r | |||
) | x [p] = ax [q] + bx [r] |
Definition at line 47 of file amesos_cholmod_complexity.h.
#define R_CLEAR | ( | x, | |
z, | |||
p | |||
) | x [p] = 0 |
Definition at line 48 of file amesos_cholmod_complexity.h.
#define R_CLEAR_IMAG | ( | x, | |
z, | |||
p | |||
) |
Definition at line 49 of file amesos_cholmod_complexity.h.
#define R_DIV | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) | x [p] /= ax [q] |
Definition at line 50 of file amesos_cholmod_complexity.h.
#define R_LLDOT | ( | x, | |
p, | |||
ax, | |||
az, | |||
q | |||
) | x [p] -= ax [q] * ax [q] |
Definition at line 51 of file amesos_cholmod_complexity.h.
#define R_PRINT | ( | k, | |
x, | |||
z, | |||
p | |||
) | PRK(k, ("%24.16e", x [p])) |
Definition at line 52 of file amesos_cholmod_complexity.h.
#define R_DIV_REAL | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
r | |||
) | x [p] = ax [q] / bx [r] |
Definition at line 54 of file amesos_cholmod_complexity.h.
#define R_MULT_REAL | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
r | |||
) | x [p] = ax [q] * bx [r] |
Definition at line 55 of file amesos_cholmod_complexity.h.
#define R_LDLDOT | ( | x, | |
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
r | |||
) | x [p] -=(ax[q] * ax[q])/ bx[r] |
Definition at line 57 of file amesos_cholmod_complexity.h.
#define C_TEMPLATE | ( | name | ) | amesos_c_ ## name |
Definition at line 63 of file amesos_cholmod_complexity.h.
#define CT_TEMPLATE | ( | name | ) | amesos_ct_ ## name |
Definition at line 64 of file amesos_cholmod_complexity.h.
#define C_ASSEMBLE | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) |
Definition at line 66 of file amesos_cholmod_complexity.h.
#define C_ASSIGN | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) |
Definition at line 70 of file amesos_cholmod_complexity.h.
#define C_ASSIGN_REAL | ( | x, | |
p, | |||
ax, | |||
q | |||
) | x [2*(p)] = ax [2*(q)] |
Definition at line 74 of file amesos_cholmod_complexity.h.
#define C_ASSIGN_CONJ | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) |
Definition at line 76 of file amesos_cholmod_complexity.h.
#define C_XTYPE_OK | ( | type | ) | ((type) == CHOLMOD_COMPLEX) |
Definition at line 80 of file amesos_cholmod_complexity.h.
#define C_IS_NONZERO | ( | ax, | |
az, | |||
q | |||
) | (IS_NONZERO (ax [2*(q)]) || IS_NONZERO (ax [2*(q)+1])) |
Definition at line 82 of file amesos_cholmod_complexity.h.
Definition at line 85 of file amesos_cholmod_complexity.h.
#define C_IS_ONE | ( | ax, | |
az, | |||
q | |||
) | ((ax [2*(q)] == 1) && IS_ZERO (ax [2*(q)+1])) |
Definition at line 88 of file amesos_cholmod_complexity.h.
#define C_IMAG_IS_NONZERO | ( | ax, | |
az, | |||
q | |||
) | (IS_NONZERO (ax [2*(q)+1])) |
Definition at line 91 of file amesos_cholmod_complexity.h.
#define C_MULT | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 93 of file amesos_cholmod_complexity.h.
#define C_MULTADD | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 97 of file amesos_cholmod_complexity.h.
#define C_MULTSUB | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 101 of file amesos_cholmod_complexity.h.
#define C_MULTADDCONJ | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 106 of file amesos_cholmod_complexity.h.
#define C_MULTSUBCONJ | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 111 of file amesos_cholmod_complexity.h.
#define C_ADD | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 115 of file amesos_cholmod_complexity.h.
#define C_ADD_REAL | ( | x, | |
p, | |||
ax, | |||
q, | |||
bx, | |||
r | |||
) | x [2*(p)] = ax [2*(q)] + bx [2*(r)] |
Definition at line 119 of file amesos_cholmod_complexity.h.
#define C_CLEAR | ( | x, | |
z, | |||
p | |||
) |
Definition at line 122 of file amesos_cholmod_complexity.h.
#define C_CLEAR_IMAG | ( | x, | |
z, | |||
p | |||
) | x [2*(p)+1] = 0 |
Definition at line 126 of file amesos_cholmod_complexity.h.
#define C_DIV | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) |
Definition at line 130 of file amesos_cholmod_complexity.h.
#define C_LLDOT | ( | x, | |
p, | |||
ax, | |||
az, | |||
q | |||
) | x [2*(p)] -= ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1] |
Definition at line 137 of file amesos_cholmod_complexity.h.
#define C_PRINT | ( | k, | |
x, | |||
z, | |||
p | |||
) | PRK(k, ("(%24.16e,%24.16e)", x [2*(p)], x [2*(p)+1])) |
Definition at line 140 of file amesos_cholmod_complexity.h.
#define C_DIV_REAL | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
r | |||
) |
Definition at line 142 of file amesos_cholmod_complexity.h.
#define C_MULT_REAL | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
r | |||
) |
Definition at line 146 of file amesos_cholmod_complexity.h.
#define C_LDLDOT | ( | x, | |
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
r | |||
) | x [2*(p)] -= (ax [2*(q)] * ax [2*(q)] + ax [2*(q)+1] * ax [2*(q)+1]) / bx[r] |
Definition at line 151 of file amesos_cholmod_complexity.h.
#define Z_TEMPLATE | ( | name | ) | amesos_z_ ## name |
Definition at line 158 of file amesos_cholmod_complexity.h.
#define ZT_TEMPLATE | ( | name | ) | amesos_zt_ ## name |
Definition at line 159 of file amesos_cholmod_complexity.h.
#define Z_ASSEMBLE | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) |
Definition at line 161 of file amesos_cholmod_complexity.h.
#define Z_ASSIGN | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) |
Definition at line 165 of file amesos_cholmod_complexity.h.
#define Z_ASSIGN_REAL | ( | x, | |
p, | |||
ax, | |||
q | |||
) | x [p] = ax [q] |
Definition at line 169 of file amesos_cholmod_complexity.h.
#define Z_ASSIGN_CONJ | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) |
Definition at line 171 of file amesos_cholmod_complexity.h.
#define Z_XTYPE_OK | ( | type | ) | ((type) == CHOLMOD_ZOMPLEX) |
Definition at line 175 of file amesos_cholmod_complexity.h.
#define Z_IS_NONZERO | ( | ax, | |
az, | |||
q | |||
) | (IS_NONZERO (ax [q]) || IS_NONZERO (az [q])) |
Definition at line 177 of file amesos_cholmod_complexity.h.
Definition at line 180 of file amesos_cholmod_complexity.h.
#define Z_IS_ONE | ( | ax, | |
az, | |||
q | |||
) | ((ax [q] == 1) && IS_ZERO (az [q])) |
Definition at line 183 of file amesos_cholmod_complexity.h.
#define Z_IMAG_IS_NONZERO | ( | ax, | |
az, | |||
q | |||
) | (IS_NONZERO (az [q])) |
Definition at line 186 of file amesos_cholmod_complexity.h.
#define Z_MULT | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 188 of file amesos_cholmod_complexity.h.
#define Z_MULTADD | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 192 of file amesos_cholmod_complexity.h.
#define Z_MULTSUB | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 196 of file amesos_cholmod_complexity.h.
#define Z_MULTADDCONJ | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 200 of file amesos_cholmod_complexity.h.
#define Z_MULTSUBCONJ | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 204 of file amesos_cholmod_complexity.h.
#define Z_ADD | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
bz, | |||
r | |||
) |
Definition at line 208 of file amesos_cholmod_complexity.h.
#define Z_ADD_REAL | ( | x, | |
p, | |||
ax, | |||
q, | |||
bx, | |||
r | |||
) | x [p] = ax [q] + bx [r] |
Definition at line 212 of file amesos_cholmod_complexity.h.
#define Z_CLEAR | ( | x, | |
z, | |||
p | |||
) |
Definition at line 215 of file amesos_cholmod_complexity.h.
#define Z_CLEAR_IMAG | ( | x, | |
z, | |||
p | |||
) | z [p] = 0 |
Definition at line 219 of file amesos_cholmod_complexity.h.
#define Z_DIV | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q | |||
) | Common->complex_divide (x [p], z [p], ax [q], az [q], &x [p], &z [p]) |
Definition at line 223 of file amesos_cholmod_complexity.h.
#define Z_LLDOT | ( | x, | |
p, | |||
ax, | |||
az, | |||
q | |||
) | x [p] -= ax [q] * ax [q] + az [q] * az [q] |
Definition at line 227 of file amesos_cholmod_complexity.h.
#define Z_PRINT | ( | k, | |
x, | |||
z, | |||
p | |||
) | PRK(k, ("(%24.16e,%24.16e)", x [p], z [p])) |
Definition at line 230 of file amesos_cholmod_complexity.h.
#define Z_DIV_REAL | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
r | |||
) |
Definition at line 232 of file amesos_cholmod_complexity.h.
#define Z_MULT_REAL | ( | x, | |
z, | |||
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
r | |||
) |
Definition at line 236 of file amesos_cholmod_complexity.h.
#define Z_LDLDOT | ( | x, | |
p, | |||
ax, | |||
az, | |||
q, | |||
bx, | |||
r | |||
) | x [p] -= (ax [q] * ax [q] + az [q] * az [q]) / bx[r] |
Definition at line 241 of file amesos_cholmod_complexity.h.
#define RETURN_IF_XTYPE_INVALID | ( | A, | |
xtype1, | |||
xtype2, | |||
result | |||
) |
Definition at line 252 of file amesos_cholmod_complexity.h.