Amesos Package Browser (Single Doxygen Collection)  Development
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
amesos_btf_maxtrans.c
Go to the documentation of this file.
1 /* ========================================================================== */
2 /* === BTF_MAXTRANS ========================================================= */
3 /* ========================================================================== */
4 
5 /* Finds a column permutation that maximizes the number of entries on the
6  * diagonal of a sparse matrix. See btf.h for more information.
7  *
8  * This function is identical to cs_maxtrans in CSparse, with the following
9  * exceptions:
10  *
11  * (1) cs_maxtrans finds both jmatch and imatch, where jmatch [i] = j and
12  * imatch [j] = i if row i is matched to column j. This function returns
13  * just jmatch (the Match array). The MATLAB interface to cs_maxtrans
14  * (the single-output cs_dmperm) returns imatch, not jmatch to the MATLAB
15  * caller.
16  *
17  * (2) cs_maxtrans includes a pre-pass that counts the number of non-empty
18  * rows and columns (m2 and n2, respectively), and computes the matching
19  * using the transpose of A if m2 < n2. cs_maxtrans also returns quickly
20  * if the diagonal of the matrix is already zero-free. This pre-pass
21  * allows cs_maxtrans to be much faster than maxtrans, if the use of the
22  * transpose is warranted.
23  *
24  * However, for square structurally non-singular matrices with one or more
25  * zeros on the diagonal, the pre-pass is a waste of time, and for these
26  * matrices, maxtrans can be twice as fast as cs_maxtrans. Since the
27  * maxtrans function is intended primarily for square matrices that are
28  * typically structurally nonsingular, the pre-pass is not included here.
29  * If this maxtrans function is used on a matrix with many more columns
30  * than rows, consider passing the transpose to this function, or use
31  * cs_maxtrans instead.
32  *
33  * (3) cs_maxtrans can operate as a randomized algorithm, to help avoid
34  * rare cases of excessive run-time.
35  *
36  * (4) this maxtrans function includes an option that limits the total work
37  * performed. If this limit is reached, the maximum transveral might not
38  * be found.
39  *
40  * Thus, for general usage, cs_maxtrans is preferred. For square matrices that
41  * are typically structurally non-singular, maxtrans is preferred. A partial
42  * maxtrans can still be very useful when solving a sparse linear system.
43  *
44  * Copyright (c) 2004-2007. Tim Davis, University of Florida,
45  * with support from Sandia National Laboratories. All Rights Reserved.
46  */
47 
48 #include "amesos_btf_decl.h"
49 #include "amesos_btf_internal.h"
50 
51 
52 /* ========================================================================== */
53 /* === augment ============================================================== */
54 /* ========================================================================== */
55 
56 /* Perform a depth-first-search starting at column k, to find an augmenting
57  * path. An augmenting path is a sequence of row/column pairs (i1,k), (i2,j1),
58  * (i3,j2), ..., (i(s+1), js), such that all of the following properties hold:
59  *
60  * * column k is not matched to any row
61  * * entries in the path are nonzero
62  * * the pairs (i1,j1), (i2,j2), (i3,j3) ..., (is,js) have been
63  * previously matched to each other
64  * * (i(s+1), js) is nonzero, and row i(s+1) is not matched to any column
65  *
66  * Once this path is found, the matching can be changed to the set of pairs
67  * path. An augmenting path is a sequence of row/column pairs
68  *
69  * (i1,k), (i2,j1), (i3,j2), ..., (i(s+1), js)
70  *
71  * Once a row is matched with a column it remains matched with some column, but
72  * not necessarily the column it was first matched with.
73  *
74  * In the worst case, this function can examine every nonzero in A. Since it
75  * is called n times by maxtrans, the total time of maxtrans can be as high as
76  * O(n*nnz(A)). To limit this work, pass a value of maxwork > 0. Then at
77  * most O((maxwork+1)*nnz(A)) work will be performed; the maximum matching might
78  * not be found, however.
79  *
80  * This routine is very similar to the dfs routine in klu_kernel.c, in the
81  * KLU sparse LU factorization package. It is essentially identical to the
82  * cs_augment routine in CSparse, and its recursive version (augment function
83  * in cs_maxtransr_mex.c), except that this routine allows for the search to be
84  * terminated early if too much work is being performed.
85  *
86  * The algorithm is based on the paper "On Algorithms for obtaining a maximum
87  * transversal" by Iain Duff, ACM Trans. Mathematical Software, vol 7, no. 1,
88  * pp. 315-330, and "Algorithm 575: Permutations for a zero-free diagonal",
89  * same issue, pp. 387-390. The code here is a new implementation of that
90  * algorithm, with different data structures and control flow. After writing
91  * this code, I carefully compared my algorithm with MC21A/B (ACM Algorithm 575)
92  * Some of the comparisons are partial because I didn't dig deeply into all of
93  * the details of MC21A/B, such as how the stack is maintained. The following
94  * arguments are essentially identical between this code and MC21A:
95  *
96  * maxtrans MC21A,B
97  * -------- -------
98  * n N identical
99  * k JORD identical
100  * Ap IP column / row pointers
101  * Ai ICN row / column indices
102  * Ap[n] LICN length of index array (# of nonzeros in A)
103  * Match IPERM output column / row permutation
104  * nmatch NUMNZ # of nonzeros on diagonal of permuted matrix
105  * Flag CV mark a node as visited by the depth-first-search
106  *
107  * The following are different, but analogous:
108  *
109  * Cheap ARP indicates what part of the a column / row has
110  * already been matched.
111  *
112  * The following arguments are very different:
113  *
114  * - LENR # of entries in each row/column (unused in maxtrans)
115  * Pstack OUT Pstack keeps track of where we are in the depth-
116  * first-search scan of column j. I think that OUT
117  * plays a similar role in MC21B, but I'm unsure.
118  * Istack PR keeps track of the rows in the path. PR is a link
119  * list, though, whereas Istack is a stack. Maxtrans
120  * does not use any link lists.
121  * Jstack OUT? PR? the stack for nodes in the path (unsure)
122  *
123  * The following control structures are roughly comparable:
124  *
125  * maxtrans MC21B
126  * -------- -----
127  * for (k = 0 ; k < n ; k++) DO 100 JORD=1,N
128  * while (head >= 0) DO 70 K=1,JORD
129  * for (p = Cheap [j] ; ...) DO 20 II=IN1,IN2
130  * for (p = head ; ...) DO 90 K=1,JORD
131  */
132 
133 static Int amesos_augment
134 (
135  Int k, /* which stage of the main loop we're in */
136  Int Ap [ ], /* column pointers, size n+1 */
137  Int Ai [ ], /* row indices, size nz = Ap [n] */
138  Int Match [ ], /* size n, Match [i] = j if col j matched to i */
139  Int Cheap [ ], /* rows Ai [Ap [j] .. Cheap [j]-1] alread matched */
140  Int Flag [ ], /* Flag [j] = k if j already visited this stage */
141  Int Istack [ ], /* size n. Row index stack. */
142  Int Jstack [ ], /* size n. Column index stack. */
143  Int Pstack [ ], /* size n. Keeps track of position in adjacency list */
144  double *work, /* work performed by the depth-first-search */
145  double maxwork /* maximum work allowed */
146 )
147 {
148  /* local variables, but "global" to all DFS levels: */
149  Int found ; /* true if match found. */
150  Int head ; /* top of stack */
151 
152  /* variables that are purely local to any one DFS level: */
153  Int j2 ; /* the next DFS goes to node j2 */
154  Int pend ; /* one past the end of the adjacency list for node j */
155  Int pstart ;
156  Int quick ;
157 
158  /* variables that need to be pushed then popped from the stack: */
159  Int i ; /* the row tentatively matched to i if DFS successful */
160  Int j ; /* the DFS is at the current node j */
161  Int p ; /* current index into the adj. list for node j */
162  /* the variables i, j, and p are stacked in Istack, Jstack, and Pstack */
163 
164  quick = (maxwork > 0) ;
165 
166  /* start a DFS to find a match for column k */
167  found = FALSE ;
168  i = EMPTY ;
169  head = 0 ;
170  Jstack [0] = k ;
171  ASSERT (Flag [k] != k) ;
172 
173  while (head >= 0)
174  {
175  j = Jstack [head] ;
176  pend = Ap [j+1] ;
177 
178  if (Flag [j] != k) /* a node is not yet visited */
179  {
180 
181  /* -------------------------------------------------------------- */
182  /* prework for node j */
183  /* -------------------------------------------------------------- */
184 
185  /* first time that j has been visited */
186  Flag [j] = k ;
187  /* cheap assignment: find the next unmatched row in col j. This
188  * loop takes at most O(nnz(A)) time for the sum total of all
189  * calls to augment. */
190  for (p = Cheap [j] ; p < pend && !found ; p++)
191  {
192  i = Ai [p] ;
193  found = (Match [i] == EMPTY) ;
194  }
195  Cheap [j] = p ;
196 
197  /* -------------------------------------------------------------- */
198 
199  /* prepare for DFS */
200  if (found)
201  {
202  /* end of augmenting path, column j matched with row i */
203  Istack [head] = i ;
204  break ;
205  }
206  /* set Pstack [head] to the first entry in column j to scan */
207  Pstack [head] = Ap [j] ;
208  }
209 
210  /* ------------------------------------------------------------------ */
211  /* quick return if too much work done */
212  /* ------------------------------------------------------------------ */
213 
214  if (quick && *work > maxwork)
215  {
216  /* too much work has been performed; abort the search */
217  return (EMPTY) ;
218  }
219 
220  /* ------------------------------------------------------------------ */
221  /* DFS for nodes adjacent to j */
222  /* ------------------------------------------------------------------ */
223 
224  /* If cheap assignment not made, continue the depth-first search. All
225  * rows in column j are already matched. Add the adjacent nodes to the
226  * stack by iterating through until finding another non-visited node.
227  *
228  * It is the following loop that can force maxtrans to take
229  * O(n*nnz(A)) time. */
230 
231  pstart = Pstack [head] ;
232  for (p = pstart ; p < pend ; p++)
233  {
234  i = Ai [p] ;
235  j2 = Match [i] ;
236  ASSERT (j2 != EMPTY) ;
237  if (Flag [j2] != k)
238  {
239  /* Node j2 is not yet visited, start a depth-first search on
240  * node j2. Keep track of where we left off in the scan of adj
241  * list of node j so we can restart j where we left off. */
242  Pstack [head] = p + 1 ;
243  /* Push j2 onto the stack and immediately break so we can
244  * recurse on node j2. Also keep track of row i which (if this
245  * search for an augmenting path works) will be matched with the
246  * current node j. */
247  Istack [head] = i ;
248  Jstack [++head] = j2 ;
249  break ;
250  }
251  }
252 
253  /* ------------------------------------------------------------------ */
254  /* determine how much work was just performed */
255  /* ------------------------------------------------------------------ */
256 
257  *work += (p - pstart + 1) ;
258 
259  /* ------------------------------------------------------------------ */
260  /* node j is done, but the postwork is postponed - see below */
261  /* ------------------------------------------------------------------ */
262 
263  if (p == pend)
264  {
265  /* If all adjacent nodes of j are already visited, pop j from
266  * stack and continue. We failed to find a match. */
267  head-- ;
268  }
269  }
270 
271  /* postwork for all nodes j in the stack */
272  /* unwind the path and make the corresponding matches */
273  if (found)
274  {
275  for (p = head ; p >= 0 ; p--)
276  {
277  j = Jstack [p] ;
278  i = Istack [p] ;
279 
280  /* -------------------------------------------------------------- */
281  /* postwork for node j */
282  /* -------------------------------------------------------------- */
283  /* if found, match row i with column j */
284  Match [i] = j ;
285  }
286  }
287  return (found) ;
288 }
289 
290 
291 /* ========================================================================== */
292 /* === maxtrans ============================================================= */
293 /* ========================================================================== */
294 
295 Int BTF(maxtrans) /* returns # of columns in the matching */
296 (
297  /* --- input --- */
298  Int nrow, /* A is nrow-by-ncol in compressed column form */
299  Int ncol,
300  Int Ap [ ], /* size ncol+1 */
301  Int Ai [ ], /* size nz = Ap [ncol] */
302  double maxwork, /* do at most maxwork*nnz(A) work; no limit if <= 0. This
303  * work limit excludes the O(nnz(A)) cheap-match phase. */
304 
305  /* --- output --- */
306  double *work, /* work = -1 if maxwork > 0 and the total work performed
307  * reached the maximum of maxwork*nnz(A)).
308  * Otherwise, work = the total work performed. */
309 
310  Int Match [ ], /* size nrow. Match [i] = j if column j matched to row i */
311 
312  /* --- workspace --- */
313  Int Work [ ] /* size 5*ncol */
314 )
315 {
316  Int *Cheap, *Flag, *Istack, *Jstack, *Pstack ;
317  Int i, j, k, nmatch, work_limit_reached, result ;
318 
319  /* ---------------------------------------------------------------------- */
320  /* get workspace and initialize */
321  /* ---------------------------------------------------------------------- */
322 
323  Cheap = Work ; Work += ncol ;
324  Flag = Work ; Work += ncol ;
325 
326  /* stack for non-recursive depth-first search in augment function */
327  Istack = Work ; Work += ncol ;
328  Jstack = Work ; Work += ncol ;
329  Pstack = Work ;
330 
331  /* in column j, rows Ai [Ap [j] .. Cheap [j]-1] are known to be matched */
332  for (j = 0 ; j < ncol ; j++)
333  {
334  Cheap [j] = Ap [j] ;
335  Flag [j] = EMPTY ;
336  }
337 
338  /* all rows and columns are currently unmatched */
339  for (i = 0 ; i < nrow ; i++)
340  {
341  Match [i] = EMPTY ;
342  }
343 
344  if (maxwork > 0)
345  {
346  maxwork *= Ap [ncol] ;
347  }
348  *work = 0 ;
349 
350  /* ---------------------------------------------------------------------- */
351  /* find a matching row for each column k */
352  /* ---------------------------------------------------------------------- */
353 
354  nmatch = 0 ;
355  work_limit_reached = FALSE ;
356  for (k = 0 ; k < ncol ; k++)
357  {
358  /* find an augmenting path to match some row i to column k */
359  result = amesos_augment (k, Ap, Ai, Match, Cheap, Flag, Istack, Jstack, Pstack,
360  work, maxwork) ;
361  if (result == TRUE)
362  {
363  /* we found it. Match [i] = k for some row i has been done. */
364  nmatch++ ;
365  }
366  else if (result == EMPTY)
367  {
368  /* augment gave up because of too much work, and no match found */
369  work_limit_reached = TRUE ;
370  }
371  }
372 
373  /* ---------------------------------------------------------------------- */
374  /* return the Match, and the # of matches made */
375  /* ---------------------------------------------------------------------- */
376 
377  /* At this point, row i is matched to j = Match [i] if j >= 0. i is an
378  * unmatched row if Match [i] == EMPTY. */
379 
380  if (work_limit_reached)
381  {
382  /* return -1 if the work limit of maxwork*nnz(A) was reached */
383  *work = EMPTY ;
384  }
385 
386  return (nmatch) ;
387 }
#define EMPTY
#define Int
#define FALSE
static Int amesos_augment(Int k, Int Ap[], Int Ai[], Int Match[], Int Cheap[], Int Flag[], Int Istack[], Int Jstack[], Int Pstack[], double *work, double maxwork)
#define ASSERT(expression)
Int BTF(maxtrans)
#define TRUE